首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Veen H  Jacobs WP 《Plant physiology》1969,44(9):1277-1284
To see if polar movement was typical of growth-regulators other than auxins, the movement of adenine-8-14C and of kinetin-8-14C was studied in segments cut from petioles of increasing age. No polarity was found. In time-course experiments lasting 24 hr, kinetin showed a progressive increase of radioactivity in receiver blocks, while adenine showed a maximum at 8 hr with a decline thereafter. More kinetin moved through older segments than through younger ones. There was no difference in net loss as far as the position of the donor block is concerned. However, the loss of radioactivity from adenine donor blocks was much higher than the loss of radioactivity from kinetin donor blocks.  相似文献   

2.
Transfer of sunflower (Helianthus annuus L. cv Russian Mammoth) seedlings from complete nutrient solution to solutions deficient in either boron or calcium resulted in a steady decline in the rate of auxin transport, compared to seedlings that remained in the complete solution. In seedlings transferred to solutions deficient in both B and Ca, the decline in auxin transport was greater than seedlings deficient in only one element. The transfer of B- or Ca-deficient seedlings back to the complete solution prevented further decline in auxin transport, but auxin transport did not increase to the same level as seedlings maintained in complete solution. The significant reduction in auxin transport during the early stages of B or Ca deficiency was not related to (a) reduced growth rate of the hypocotyl, (b) increased acropetal movement of auxin, or (c) lack of respiratory substrates in the hypocotyl. In addition, no difference was found in the water-extractable total and ionic Ca in B-deficient and control nondeficient hypocotyls, indicating a direct effect of B on auxin transport, rather than indirectly by affecting Ca absorption. The rate of auxin transport in hypocotyls deficient in either B or Ca, was inversely correlated with K+ leakage and rate of respiration. The data presented strongly support the view that there are separate sites for B and Ca in the basipetal transport of the plant hormone indoleacetic acid.  相似文献   

3.
Indole-3-methanol is a product of indole-3-acetic acid metabolism in wheat leaves ( Triticum compactum Host., cv. Little Club). It leads either to the production of the corresponding aldehyde and carboxylic acid, to the production of a polar glucoside which releases indole-3-methanol on β-glucosidase treatment, or to an unidentified apolar product on mild alkaline hydrolysis in aqueous methanol. With reference to a published pathway of indole-3-acetic acid degradation, the results provide evidence for a prominent role of indole-3-methanol and also for the occurrence of co-oxidation processes in wheat leaves involving indole-3-acetic acid and phenolic cosubstrates.  相似文献   

4.
Sunflower (Helianthus annuus L. cv Russian Mammoth) hypocotyl segments deficient in either B or Ca exhibited a higher rate of potassium leakage, compared to nondeficient segments. Potassium leakage, used here as an indication of membrane integrity, was completely reversed by the addition of H3BO3 or Ca(NO3)2 to the incubation medium of the B-deficient or Ca-deficient hypocotyl segments, respectively. This role of B and Ca in membrane integrity, which may be important in the entry and exit of auxin in cells, is identified as the first site of action for each of these two essential elements in the basipetal secretion of auxin. A second site for B is postulated because auxin transport was not restored, even when K+ leakage has been completely reversed to the nondeficient level, when B-deficient hypocotyls were incubated in B solution. This lack of reversibility of auxin transport implied that the incubation for 2 h in B solution was not enough to restore the auxin transport process. However, since the transfer of B-deficient seedlings to B solutions prevented further deterioration of auxin transport, these observations suggest that: (a) either an intact seedling, or a longer period of incubation of the hypocotyl in B solution, is required for the synthesis or maintenance of the functional second site for B; (b) B is probably essential in the synthesis of a ligand, which may or may not be needed to bind B, but which is essential in the basipetal transport of auxin. The second site for Ca in auxin transport, is indicated by the complete reversal of its inhibition in Ca-deficient hypocotyl, when incubated in Ca solution. The second site for Ca is thought to be directly involved in the secretion of auxin, in which Ca probably plays the role of a second messenger, as in stimulus-response coupling. The two sites for Ca can be distinguished from each other by their cation specificity. The requirement for Ca in the first site can be substituted by other divalent cations, while the second site is highly specific for Ca.  相似文献   

5.
Rayle DL  Purves WK 《Plant physiology》1967,42(8):1091-1093
Indoleethanol-14C was applied to intact cucumber seedlings and to hypocotyl segments. The presence of indoleacetic acid-14C in tissue extracts was demonstrated by thin layer radiochromatography. There was no evidence of conversion of indoleacetic acid to indoleethanol. It is suggested that the growth-promoting activity of indoleethanol is due to its conversion to indoleacetic acid.  相似文献   

6.
The short-term response of green pea stem segments to indole-3-aceticacid (IAA) was investigated by continuously recording stem elongationwith a differential transformer. Stem segment elongation promotedby IAA began following a latent period after application. Thelatent period was more effectively shortened by raising thetemperature rather than the concentration of IAA; it was reducednearly to 0 min by treatment at 40?C. The length of the latentperiod was not affected by turgor pressures of stem cells, thoughthe rate of stem growth was diminished at lower turgor pressures.Stems pretreated with actinomycin D for 60 min, cycloheximidefor 30 min or colchicin for 6 hr were similar to untreated stemsin their short term response to IAA. This implies that the initiallypromoted elongation does not result from the activity of enzymessynthesized during the latent period by the action of IAA. (Received April 5, 1973; )  相似文献   

7.
Esters of indole-3-acetic Acid from Avena seeds   总被引:1,自引:7,他引:1       下载免费PDF全文
The present studies showed that about 80% of the indole-3-acetic acid extractable from Avena kernels by aqueous acetone was esterified to polymers precipitable by ammonium sulfate and ethanol or acetone. The polymers were positively charged, being adsorbed to cation exchange columns at a pH of 3, or below, and eluted at a pH greater than 4. The polymers were heterogeneous with respect to size, about 5,000 to 20,000 daltons, and charge, exhibiting apparent pKa values of 4.2 and 4.7. The polymer fractions contained esterified IAA, anthrone-reactive material that liberated glucose upon acid hydrolysis, phenolic compounds, and peptidic material with a high proportion of hydrophobic amino acids. Since the esterified IAA was unstable, establishing polymer purity was not possible, and the designation IAA-glucoprotein fraction was adopted.  相似文献   

8.
Free and conjugated indole-3-acetic Acid in developing bean seeds   总被引:2,自引:6,他引:2       下载免费PDF全文
The changes in conjugated indole-3-acetic acid (IAA) levels compared to the levels of free IAA have been analyzed during the development of bean (Phaseolus vulgaris L.) seed using quantitative mass spectrometry. Free and ester-linked IAA levels are both relatively high in the early stages of seed development but drop during seed maturation. Concomitantly, the amide-linked IAA becomes the major form of IAA present as the seed matures. In fully mature seed, amide IAA accounts for 80% of the total IAA. The total IAA pool in the seed is maintained at approximately the same level (150-170 nanograms/seed) once the level of free IAA has attained its maximum. Thus, the amount of amide IAA conjugates that accumulate in mature seed is closely related to the amounts of free and ester-linked IAA that disappeared from the rapidly growing seed. Analysis of developing bean pods, from which the seeds were taken for analysis, showed very low levels of both ester and amide-linked IAA conjugates. The pattern of changes seen in the levels of free and conjugated IAA in developing bean seed supports our prior hypothesis suggesting a role of IAA conjugates in the storage of the phytohormone in the seed.  相似文献   

9.
Liu X  Barkawi L  Gardner G  Cohen JD 《Plant physiology》2012,158(4):1988-2000
The polar transport of the natural auxins indole-3-butyric acid (IBA) and indole-3-acetic acid (IAA) has been described in Arabidopsis (Arabidopsis thaliana) hypocotyls using radioactive tracers. Because radioactive assays alone cannot distinguish IBA from its metabolites, the detected transport from applied [3H]IBA may have resulted from the transport of IBA metabolites, including IAA. To test this hypothesis, we used a mass spectrometry-based method to quantify the transport of IBA in Arabidopsis hypocotyls by following the movement of [13C1]IBA and the [13C1]IAA derived from [13C1]IBA. We also assayed [13C6]IAA transport in a parallel control experiment. We found that the amount of transported [13C1]IBA was dramatically lower than [13C6]IAA, and the IBA transport was not reduced by the auxin transport inhibitor N-1-naphthylphthalamic acid. Significant amounts of the applied [13C1]IBA were converted to [13C1]IAA during transport, but [13C1]IBA transport was independent of IBA-to-IAA conversion. We also found that most of the [13C1]IBA was converted to ester-linked [13C1]IBA at the apical end of hypocotyls, and ester-linked [13C1]IBA was also found in the basal end at a level higher than free [13C1]IBA. In contrast, most of the [13C6]IAA was converted to amide-linked [13C6]IAA at the apical end of hypocotyls, but very little conjugated [13C6]IAA was found in the basal end. Our results demonstrate that the polar transport of IBA is much lower than IAA in Arabidopsis hypocotyls, and the transport mechanism is distinct from IAA transport. These experiments also establish a method for quantifying the movement of small molecules in plants using stable isotope labeling.  相似文献   

10.
Meudt WJ  Gaines TP 《Plant physiology》1967,42(10):1395-1399
The method described here is based on a brief report by Harley-Mason and Archer. It involves the use of p-dimethylaminocinnamaldehyde (DMACA), a vinylogue of Ehrlich's reagent, as a color reagent for indoles. Colorimetric analyses of indoleacetic acid (IAA) oxidation reaction mixtures were made with the DMACA reagent as a solution rather than a spray. DMACA reagent will yield a wine-red color with IAA oxidation products in solution. Under similar conditions DMACA reacts with authentic IAA to yield only slight coloration at best. In comparison with other indoles, DMACA is more relative with IAA oxidation reaction products than either Salkowski or Ehrlich's reagents. Data discussed support a concept that the color produced with DMACA is due to the presence of tautomeric oxidation product(s) of IAA.  相似文献   

11.
Exogenous [14C]indole-3-acetic acid (IAA) is conjugated in citrus (Citrus sinensis) leaf tissues to one major substance which has been identified as indole-3-acetylaspartic acid (IAAsp). Ethylene pretreatment enhanced the catabolism of [14C]IAA to indole-3-carboxylic acid (ICA), which accumulated as glucose esters (ICGIu). Increased formation of ICGIu by ethylene was accompanied by a concomitant decrease in IAAsp formation. IAAsp and ICGIu were identified by combined gas chromatography-mass spectrometry. Formation of ICGIu was dependent on the concentration of ethylene and the duration of the ethylene pretreatment. It is suggested that the catabolism of IAA to ICA may be one of the mechanisms by which ethylene reduces endogenous IAA levels.  相似文献   

12.
Polar transport of the natural auxin indole-3-acetic acid (IAA) is important in a number of plant developmental processes. However, few studies have investigated the polar transport of other endogenous auxins, such as indole-3-butyric acid (IBA), in Arabidopsis. This study details the similarities and differences between IBA and IAA transport in several tissues of Arabidopsis. In the inflorescence axis, no significant IBA movement was detected, whereas IAA is transported in a basipetal direction from the meristem tip. In young seedlings, both IBA and IAA were transported only in a basipetal direction in the hypocotyl. In roots, both auxins moved in two distinct polarities and in specific tissues. The kinetics of IBA and IAA transport appear similar, with transport rates of 8 to 10 mm per hour. In addition, IBA transport, like IAA transport, is saturable at high concentrations of auxin, suggesting that IBA transport is protein mediated. Interestingly, IAA efflux inhibitors and mutations in genes encoding putative IAA transport proteins reduce IAA transport but do not alter IBA movement, suggesting that different auxin transport protein complexes are likely to mediate IBA and IAA transport. Finally, the physiological effects of IBA and IAA on hypocotyl elongation under several light conditions were examined and analyzed in the context of the differences in IBA and IAA transport. Together, these results present a detailed picture of IBA transport and provide the basis for a better understanding of the transport of these two endogenous auxins.  相似文献   

13.
Indole-3-butyric acid (IBA) was much more effective than indole-3-acetic acid (IAA) in inducing adventitious root formation in mung bean ( Vigna radiata L.) cuttings. Prolonging the duration of treatment with both auxins from 24 to 96 h significantly increased the number of roots formed. Labelled IAA and IBA applied to the basal cut surface of the cuttings were transported acropetally. With both auxins, most radioactivity was detected in the hypocotyl, where roots were formed, but relatively more IBA was found in the upper sections of the cuttings. The rate of metabolism of IAA and IBA in these cuttings was similar. Both auxins were metabolized very rapidly and 24 h after application only a small fraction of the radioactivity corresponded to the free auxins. Hydrolysis with 7 M NaOH indicates that conjugation is the major pathway of IAA and IBA metabolism in mung bean tissues. The major conjugate of IAA was identified tentatively as indole-3-acetylaspartic acid, whereas IBA formed at least two major conjugates. The data indicate that the higher root-promoting activity of IBA was not due to a different transport pattern and/or a different rate of conjugation. It is suggested that the IBA conjugates may be a better source of free auxin than those of IAA and this may explain the higher activity of IBA.  相似文献   

14.
The elongation growth of etiolated hypocotyl segments of lupin (Lupinus albus L.) was stimulated by acid pH (4.6 versus 6.5) and by IAA for periods of up to 4 h. After this time, the segments were unable to grow further. In the presence of an optimal IAA concentration (10 μM), acid pH increased the growth rate but had no effect on final growth. With suboptimal IAA (0.1 μM), however, acid pH increased growth in a more than additive way, suggesting a synergistic action between the two factors. This synergism may be explained by the increased IAA uptake and decarboxylation seen at an acid pH. These results reinforce the view that the effects of low pH and IAA on growth are not independent. Vanadate inhibited growth and also IAA uptake and decarboxylation. This inhibitor, therefore, probably inhibits growth not only by decreasing ATPase-mediated acidification but also by decreasing H+-dependent IAA uptake from the apoplasm. This dependence of IAA uptake on ATPase may be mediated by apoplasmic acidification. The amount of IAA decarboxylated increased when the assay conditions favored the growth of segments, indicating that IAA could be destroyed by decarboxylation during the auxin-induced growth.  相似文献   

15.
The uptake and metabolism of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) were studied in suspension cell cultures of Petunia hybrida. The initial uptake of 3H-IBA was much higher than that of 3H-IAA, and after 10 min of incubation with labeled IBA and IAA, 4.6 pM vs 0.35 (39% vs 12% of total applied radioactivity) respectively, were found in the cell extracts. The uptake of IBA reached a plateau of 6.0 pM (62%) after 2 h while that of IAA increased continuously up to 1.5 pM (46%) after 24 h. Following the addition of 40 µM of unlabeled auxin more IBA was taken in initially than IAA (39% vs 12%), but the level almost equalized after 24 h of incubation when IBA uptake reached 890 nM (55%) and IAA 840 nM (46%).IBA was metabolized very rapidly by Petunia cell suspension to new compounds. HPLC of the cell extracts demonstrated a new metabolite after only 2 min of incubation, and after 30 min 60% of the radioactivity was in the new metabolite vs 10% in the IBA. The new compound was resolved by autofluorography to two metabolites but after 24 h only one metabolite was present. The IBA metabolites were identified tentatively as IBA aspartic acid (IBAasp) and IBA glucose (IBAglu). In the medium IBA disappeared at a fast rate and after 24h most of the radioactivity was present in the new metabolite, probably IBAasp. IAA was also converted rapidly to two new metabolites and both were still present after 24 h. No attempt was made to identify the metabolites of IAA. IAA metabolism proceeded at a slower rate, and autofluorography showed that while free IBA disappeared after 0.5 h, free IAA was still present after 1 h of incubation. We postulate that Petunia cells conjugate IBA rapidly to IBAglu which in turn is converted to form IBAasp which probably acts as a slow release hormone. Only intact cells were able to metabolize IBA and the reaction was affected by low temperature and anaerobic conditions. The fast rate of IBA uptake, the need for whole cells for the metabolism to proceed, and the fast change of IBA to a new metabolite in the medium, all suggest that both uptake and metabolism of IBA in Petunia cells occur on the cell surface.  相似文献   

16.
Göran Sandberg 《Planta》1984,161(5):398-403
Combined gas chromatography-mass spectrometry has been used to identify indole-3-ethanol (IEt) in a purified extract from needles of Pinus sylvestris L. Quantitative estimates obtained by high-performance liquid chromatography with fluorescence detection, corrected for samples losses occurring during purification, indicate that Pinus needles contain 46±4 ng g-1 IEt. This compares with 24.5±6.5 ng g-1 indole-3-acetic acid (IAA) and 2.3±0.4 ng g-1 indole-3-carboxylic acid (ICA) (Sandberg et al. 1984, Phytochemistry, 23, 99–102). Metabolism studies with needles incubated in a culture medium in darkness revealed that both [3-14C]-tryptophan and [2-14C]tryptamine mine are converted to [14C]IEt. It was also shown that [3-14C]IEt acted as a precursor of [14C]IAA. The observed metabolism appears to be enzymic in nature. The [2-14C]IAA was not catabolised to [14C]ICA in detectable quantities implying that, at best, only a minor portion of the endogenous ICA pool in the Pinus needles originates from IAA.Abbreviations DEAE diethylaminoethyl - GC-MS gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - IAA indole-3-acetic acid - ICA indole-3-carboxylic acid - IEt indole-3-ethanol - PVP polyvinylpyrrolidone  相似文献   

17.
Skok J 《Plant physiology》1968,43(2):215-223
Stem applications of indole-3-acetic acid (IAA) or gibberellic acid (GA) did not prevent or alter tumor or teratoma formation in debudded tobacco plants (Nicotiana tabacum L., var. One Sucker). The materials produced intense (in case of GA) and moderate (in case of IAA) stem proliferations when applied to debudded plants but were without effect on intact plants.

The results suggest that debudding-tumors are probably not related to or a result of an auxin or gibberellin deficit and that total debudding has a marked physiological effect on the plant. The altered physiological condition of the debudded plant, indicated by its responses to IAA and GA, may likely be related to tumor and teratoma formation.

  相似文献   

18.
Park RD  Park CK 《Plant physiology》1987,84(3):826-829
The stability of 21 amino acid conjugates of indole-3-acetic acid (IAA) toward horseradish peroxidase (HRP) was studied. The IAA conjugates of Arg, Ile, Leu, Tyr, and Val were oxidized readily by peroxidase. Those of Ala, β-Ala, Asp, Cys, Gln, Glu, Gly, and Lys were not degraded and their recovery was above 92% after 1 hour incubation with HRP. A correlation between the stability of IAA conjugates toward peroxidase-catalyzed oxidation and the hydrophobicity of the amino acid moiety conjugated to IAA was demonstrated. Polar amino acid conjugates of IAA are more resistant to HRP-catalyzed oxidation.  相似文献   

19.
2,4-Dichlorophenoxyacetic acid (2,4-D) promotes the accumulation of tryptophan-derived indole-3-acetic acid (IAA) in carrot cell cultures during callus proliferation by a biosynthetic pathway that is apparently not active during somatic embryo formation. The effects of 2,4-D were examined by measuring the isotopic enrichment of IAA due to the incorporation of stable isotope-labeled precursors (deuterium oxide, [15N]indole, and 2H5-l-tryptophan). Enrichment of IAA from deuterium oxide is similar in both cultured hypocotyls and cell suspension cultures in the presence and absence of 2,4-D, despite the large differences in absolute IAA concentrations. The enrichment of IAA due to the incorporation of [15N]indole is also similar in callus proliferating in the presence of 2,4-D and in embryos developing in the absence of 2,4-D. The incorporation of 2H5-l-tryptophan into IAA, however, is at least 7-fold higher in carrot callus cultures proliferating in the presence of 2,4-D than in embryos developing in the absence of 2,4-D. Other experiments demonstrated that this differential incorporation of 2H5-l-tryptophan into IAA does not result from differential tryptophan uptake or its subsequent compartmentation. Thus, it appears that differential pathways for IAA synthesis operate in callus cultures and in developing embryos, which may suggest that a relationship exists between the route of IAA biosynthesis and development.  相似文献   

20.
To clarify the participation of indole-3-acetic acid (IAA) originatingfrom the shoot in root growth regulation and the mechanism ofIAA translocation from shoot to root, the movement of 14C-IAAwhich was applied to the epicotyl or the cotyledon of Viciafaba seedlings was investigated. The radioactivity of IAA appliedto the cotyledon moved faster to the root tip than that appliedto the epicotyl. On the basis of the effect of 2,3,5-triiodobenzoic acid on IAAmovement, a comparison with 14C-glucose movement and autoradiographicexamination, the nature of IAA movement was concluded to bepolar transport from the epicotyl to the basal part of the roots,while IAA movement from the epicotyl to the cotyledon, fromthe basal part of roots to the apical part, and from the cotyledonto the epicotyl and to the root took place in the phloem. Theradioactivity from 14C-IAA applied to the cotyledon accumulatedin lateral root primordia and vascular bundles. These factssuggest that IAA produced in cotyledons may participate in theregulation of Vicia root development. (Received December 21, 1979; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号