首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drosophila hydei rRNA genes from different chromosomes and from different stocks have been studied by restriction enzyme analysis. In DNA from wild-type females, about half of the X chromosomal rRNA genes are interrupted by an intervening sequence within the 28S coding region. In contrast to D. melanogaster, the intervening sequences belong to a single size class of 6.0 kb. Although there are two nucleolus organizers on the Y chromosome, genes containing the intervening sequence seem to be restricted to the X chromosome. — As shown in four cloned rDNA fragments, the nontranscribed spacers differ in length by having varying numbers of a 242 base pair sequence located in tandem in the right section of the spacer. In genomic rDNA, the spacers also differ in length by a regular 0.25 kb interval. Spacers with between 5 and 15 subrepeats occur frequently within the X and Y chromosomal nucleolus organizers in different D. hydei stocks; shorter and longer spacers are also present but are relatively rare. — Although each genotype is characterized by different frequencies of some spacer classes, the prominent spacer length heterogeneity pattern is similar among the different nucleolus organizers and, therefore, seems to be conserved during evolution.This paper is dedicated to Professor Dr. W. Beermann on the occasion of his 60th birthday  相似文献   

2.
The nuclear 18S, 5.8S and 25S rRNA genes exist as thousands of rDNA repeats in the Scots pine genome. The number and location of rDNA loci (nucleolus organizers, NORs) were studied by cytological methods, and a restriction map from the coding region of the Scots pine rDNA repeat was constructed using digoxigenin-labeled flax rDNA as a probe. Based on the maximum number of nucleoli and chromosomal secondary constrictions, Scots pine has at least eight NORs in its haploid genome. The size of the Scots pine rDNA repeat unit is approximately 27 kb, two- or threefold larger than the typical angiosperm rDNA unit, but similar in size to other characterized conifer rDNA repeats. The intergenic spacer region (IGS) of the rDNA repeat unit in Scots pine is longer than 20 kb, and the transcribed spacer regions surrounding the 5.8S gene (ITS1 and ITS2) span a region of 2.9 kb. Restriction analysis revealed that although the coding regions of rDNA repeats are homogeneous, heterogeneity exists in the intergenic spacer region between individuals, as well as among the rDNA repeats within individuals.  相似文献   

3.
  • 1.1. The transcribed region of Bombyx mandarina rDNA was identical to that of B. mori rDNA when the restriction maps and partial nucleotide sequences were compared. The result supports the assumption that Bombyx mandarina is an ancestor of Bombyx mori and that the two were subdivided very recently.
  • 2.2. Non-transcribed spacer (NTS) of four clones derived from the two insects was slightly different from one another, which seemed to be due to the difference in the number of repeated sequences distributed in the spacer.
  • 3.3. The five clones from B. mandarina had the type I insertion sequence (IS) homologous to that in Bombyx mori 28S rDNA. There was micro-heterogeneity in the structure of IS.
  相似文献   

4.
We have analyzed the sequence organization of the central spacer region of the extrachromosomal ribosomal DNA from two strains of the acellular slime mold Physarum polycephalum. It had been inferred previously from electron microscopy that this region, which comprises about one third of the 60 kb3 palindromic rDNA, contains a complex series of inverted repetitious sequences. By partial digestion of end-labeled fragments isolated from purified rDNA and from rDNA fragments cloned in Escherichia coli, we have constructed a detailed restriction map of this region. The 11 kb of spacer DNA of each half molecule of rDNA contains the following elements: (a) two separate regions, one of 1.1 kb and one of 2.1 kb, composed of many direct repeats of the same 30 base-pair unit; (b) a region of 4.4 kb composed of a complex series of inverted repeats of a 310 base-pair unit; (c) another region of 1.6 kb composed of inverted repeats of the same 310 base-pair unit located directly adjacent to the center of the rDNA; (d) two copies of a unique sequence of 0.85 kb, which probably contains a replication origin. Some of the CpG sequences in the spacer resist cleavage by certain restriction endonucleases and thus appear to be methylated. The lack of perfect symmetry about the central axis and the arrangement of inverted repeated sequences explain the complex pattern of branches and forks of the fold-back molecules previously observed by electron microscopy. Comparison of the rDNA restriction maps from the two strains of Physarum suggests that the repeat units in the spacer are undergoing concerted evolution. We propose a model to explain the evolutionary origin of the several palindromic axes in the Physarum rDNA spacer.  相似文献   

5.
6.
Two pairs of chromosomes (1U and 5U) in Aegilops umbellulata possess ribosomal RNA genes. This has been proven by studying wheat plants into which 1U and 5U chromosomes have been introduced separately. These plants have more ribosomal RNA genes than the recipient wheat plants and additional clusters of rDNA when examined by in situ hybridisation. The repeating rDNA unit in Aegilops umbellulata is longer than most of the units in the wheat variety Chinese Spring, the additional DNA probably being in the non-transcribed spacer. This was determined from restriction endonuclease maps of rDNA. In Chinese Spring plants possessing 1U or 5U chromosomes, the largest nucleoli are formed on 1U or 5U chromosomes and the wheat nucleolus organisers form micronucleoli. This is not because the nucleolus organisers on chromosomes 1U and 5U have many more rRNA genes than wheat nucleolus organisers. It is suggested that the Aegilops umbellulata nucleolus organisers are dominant over those of wheat because they compete more effectively for some limiting factor. — The partial inactivation of the wheat nucleolus organisers by chromosomes 1U or 5U does not result in a reduced total nucleolus volume in root tip or pollen mother cells, because of the compensation by the nucleolus organisers of chromosomes 1U or 5U. The amount of RNA in seedlings is not markedly affected by the partial inactivation of the wheat nucleolus organisers.  相似文献   

7.
Summary We have isolated a bobbed (bb) mutant on the free duplication Dp(1; f)122bb + and we have measured the rDNA content of the bb + and the bb loci in genetic combinations in which none of the phenomena involved in the change of the rDNA redundancy occurs. We have also measured the rDNA content of the two bb loci carried by the free duplications in two different genetic combinations: (1) and females in which there are two attached X chromosomes completely deleted for the nucleolus organizer (NO) regions and there-fore the only rDNA is contributed by the free duplication; (2) X/Dp122bb + and X/Dp122bb males, in which there are two bb loci, one on the X chromosome and the other on the X free duplication.The bb + and the bb duplications produced an overall increase of the rDNA content in the two genetic conditions tested.These results are not in favour of both a cis and trans effect of the regulator locus (cr + locus) hypothesised as being involved in the disproportionate replication of rRNA genes.  相似文献   

8.
B. C. Clarke  Y. Mukai  R. Appels 《Chromosoma》1996,105(5):269-275
This paper describes a detailed sequence analysis of the ω-secalin gene array at theSec-1 locus on the short arm of chromosome 1 of rye. The analysis shows that the genes are separated by 8 kb of spacer sequence and that the gene/spacer units are arranged in a head to tail fashion. The boundaries of the array are identified, and a fragment containing the majority of the genes in the array is separated by PFG analysis. The sequence data of one 9.2 kb gene unit have been determined, and because of the similarity of the gene units within the array these data provide a detailed sequence analysis of 140 kb of theSec-1 locus. Fluorescence in situ hybridization, using lambda clones isolated for the structural analysis, identifies the position of the array on the rye chromosomes relative to the 5S rRNA genes. Edited by: W. Hennig  相似文献   

9.
The rDNA cluster in Saccharomyces cerevisiae is located 450 kb from the left end and 610 kb from the right end of chromosome XII and consists of ~150 tandemly repeated copies of a 9.1 kb rDNA unit. To explore the biological significance of this specific chromosomal context, chromosome XII was split at both sides of the rDNA cluster and strains harboring deleted variants of chromosome XII consisting of 450 kb, 1500 kb (rDNA cluster only) and 610 kb were created. In the strain harboring the 1500 kb variant of chromosome XII consisting solely of rDNA, the size of the rDNA cluster was found to decrease as a result of a decrease in rDNA copy number. The frequency of silencing of URA3 inserted within the rDNA locus was found to be greater than in a wild-type strain. The localization and morphology of the nucleolus was also affected such that a single and occasionally (6–12% frequency) two foci for Nop1p and a rounded nucleolus were observed, whereas a typical crescent-shaped nucleolar structure was seen in the wild-type strain. Notably, strains harboring the 450 kb chromosome XII variant and/or the 1500 kb variant consisting solely of rDNA had shorter life spans than wild type and also accumulated extrachromosomal rDNA circles. These observations suggest that the context of chromosome XII plays an important role in maintaining a constant rDNA copy number and in physiological processes related to rDNA function in S.cerevisiae.  相似文献   

10.
Summary The organization of the ribosomal DNA (rDNA) repcat unit in the standard wild-type strain of Neurospora crassa, 74-OR23-1A, and in 30 other wild-type strains and wild-collected strains of N. crassa, N. tetrasperma, N. sitophila, N. intermedia, and N. discreta isolated from nature, was investigated by restriction enzyme digestion of genomic DNA, and probing of the Southern-blotted DNA fragments with specific cloned pieces of the rDNA unit from 74-OR23-1A. The size of the rDNA unit in 74-OR23-1A was shown to be 9.20 kilobase pairs (kb) from blotting data, and the average for all strains was 9.11+0.21 kb; standard error=0.038; coefficient of variation (C.V.)=2.34%. These data indicate that the rDNA repeat unit size has been highly conserved among the Neurospora strains investigated. However, while all strains have a conserved HindIII site near the 5 end of the 25 S rDNA coding sequence, a polymorphism in the number and/or position of HindIII sites in the nontranscribed spacer region was found between strains. The 74-OR23-1A strain has two HindIII sites in the spacer, while others have from 0 to at least 3. This restriction site polymorphism is strain-specific and not species-specific. It was confirmed for some strains by restriction analysis of clones containing most of the rDNA repeat unit. The current restriction map of the 74-OR23-1A rDNA repeat unit is presented.  相似文献   

11.
The ribosomal DNA repeat units of two closely related species of the genus Fraxinus, F. excelsior and F. oxyphylla, were characterized. The physical maps were constructed from DNA digested with BamHI, EcoRI, EcoRV and SacI, and hybridized with three heterologous probes. The presence or the absence of an EcoRV restriction site in the 18s RNA gene characterizes two ribosomal DNA unit types found in both species and which coexist in all individuals. A third unit type appeared unique to all individuals of F. oxyphylla. It carries an EcoRI site in the intergenic spacer. Each type of unit displayed length variations. The rDNA unit length of F. excelsior and F. oxyphylla was determined with EcoRV restriction. It varied between 11kb and 14.5kb in F. excelsior and between 11.8kb to 13.8kb in F. oxyphylla. Using SacI restriction, at least ten spacer length variants were observed in F. excelsior, for which a detailed analysis was conducted. Each individual carries 2–4 length variants which vary by a 0.3-kb step multiple. This length variation was assigned to the intergenic spacer. By using the entire rDNA unit of flax as probe in combination with EcoRI restriction, each species can be unambiguously discriminated. The species-specific banding pattern was used to compare trees from a zone of sympatry between the two species. In some cases, a conflicting classification was obtained from morphological analysis and the use of the species-specific rDNA polymorphism. Implications for the genetic management of both species are discussed.  相似文献   

12.
Eight species ofAllium subgen.Allium sect.Allium have been studied at the cytological level by means of karyological analyses and at the biochemical level with regard to the proportions of ribosomal DNA. All the species have a basic genome of x = 8.A. sativum, A. commutatum, A. ampeloprasum, andA. vineale possess approximately 0.050% rDNA and two nucleolus organizer regions per basic chromosome set.A. sphaerocephalon andA. arvense have two nucleolus organizers, andA. amethystinum three nucleolus organizers per haploid (n = x) genome: the three species possess approximately 0.075% rDNA.A. acutiflorum has five nucleolus organizer regions per haploid genome and 0.121% rDNA. An attempt to relate these differences with functional and ecological characteristics indicates that evolutionary variation of rDNA proportions is not casual. Such data also can help to define systematic affinities and circumscribe infrageneric taxa.  相似文献   

13.
The structural organization of ribosomal DNA in Drosophila melanogaster.   总被引:66,自引:0,他引:66  
P K Wellauer  I B Dawid 《Cell》1977,10(2):193-212
  相似文献   

14.
This paper describes the structure of a 9.2-kb repeat unit of DNA, which represents one-secalin gene and spacer sequence located at theSec-1 locus on the short arm of chromosome 1 of rye. The gene units at theSec-1 locus comprise 1.1 kb representing the gene and 8.1 kb of spacer sequence separating the genes. A sequence comparison of nine genes and their promoter regions from theSec-1 locus, reveals that there is greater variation within the coding sequence than there is within the promoter regions. The gene sequence variation is discussed in terms of the size variation seen for the-secalin proteins in rye species. The results include a comparison of promoter sequences from members of the Triticeae to examine the degree of conservation between other seed storage protein genes.  相似文献   

15.
Summary The nucleolus organizer region located on the short arm of chromosome 1R of rye consists of a large cluster of genes that code for ribosomal RNA (designated the Nor-R1 locus). The genes in the cluster are separated by spacer regions which can vary in length in different rye lines. Differences in the spacer regions were scored in two families of F2 progeny. Segregation also occurred, in one or both of the families, at two seed protein loci and at two isozyme loci also located on chromosome 1R. The seed protein loci were identified as the Sec 1 locus controlling -secalins located on the short arm of chromosome 1R and the Sec 3 locus controlling high-molecular-weight secalins located on the long arm of 1R. The two isozyme loci were the Gpi-R1 locus controlling glucose-phosphate isomerase isozymes and the Pgd 2 locus controlling phosphogluconate dehydrogenase isozymes. The data indicated linkage between all five loci and map distances were calculated. The results indicate a gene order: Pgd 2 ... Sec 3 ... [centromere] ... Nor-R1 ... Gpi-R1 ... Sec 1. Evidence was obtained that rye possesses a minor 5S RNA locus (chromosome location unknown) in addition to the major 5S RNA locus previously shown to be located on the short arm of chromosome 1R.  相似文献   

16.
We have examined the organization of cloned rDNA [encoding ribosomal RNA (rRNA)] repeat units from the tailed frog, Ascaphus truei, and have compared rDNA spacer lengths in the genomes of eleven individuals from two widely-separated populations. This comparison has shown that the A. truei spacer is always very short (about 1.5 kb) and that it is remarkably constant in length. In none of the individuals tested were more than two spacer-length classes found and the maximum difference in spacer length found in comparisons both within single animals and across both populations was about 120 bp. We point out those structural features that may contribute to the unusual stability of this spacer and the consequent absence of the extensive length heterogeneities found amongst rDNA repeat units in most genomes.  相似文献   

17.
Summary In this report we show by hybridization of restriction fragments and by Miller spreads that the unit repeat of the fly Sciara coprophila is only 8.4 kb which is the smallest known for a multicellular eukaryote. The 8.4 kb EcoR1 fragment containing a complete unit of Sciara rDNA was cloned in pBR322, and mapped by the method of Parker (1977) and also by double digestion. The coding regions for 28S, 18S, and 5.8S RNA were localized by the method of Berk and Sharp (1977). From these data we conclude that the nontranscribed spacer, external transcribed spacer, and internal transcribed spacer are all shorter than in other organisms, thereby giving rise to the shorter overall rDNA repeat unit of Sciara.At least 90% of the Sciara rDNA repeats are homogeneous, with a length of 8.4 kb, but a 700 bp ladder of minor bands can also be found in digestions of total genome DNA. This profile of major and minor bands is identical between the X and X chromosomes, as seen by a comparison of several genotypes.There are only 45 rRNA genes per X chromosome of Sciara (Gerbi and Crouse, 1976). These can easily be counted by low magnification Miller speads which show that virtually all gene copies are actively being transcribed in the stage of spermatogenesis examined. This is the first demonstration for any reiterated gene family where all copies are shown to be simultaneously active.Present address same as last author  相似文献   

18.
Summary Plants derived from tissue cultures of six triticale genotypes were the subject of an analysis for changes in the rRNA genes located at the site of nucleolar organizer regions (the Nor loci) on chromosomes 1B, 6B and 1R. In addition whole plant phenotypes and the chromosomal constitutions of their progenies were examined for alterations. Following treatment of DNA with the restriction endonuclease Taq1, it was possible to assign electrophoretic bands representing rDNA spacer sequences to each of the chromosomes known to carry a major Nor locus. In general, the rRNA genes were found to be stable except in one family where a marked reduction in the number of rDNA units was observed. This reduction in 1R rDNA spacer sequences was heritable and correlated with reduced C-banding at the position of Nor-R1 on chromosome 1R. The change was clearly a consequence of tissue culture since six other plants regenerated from the same culture, and the original parent, did not carry the alteration.  相似文献   

19.
We examined the structure, intranuclear distribution and activity of ribosomal DNA (rDNA) in Nico-tiana sylvestris (2n=2x=24) and N. tomentosiformis (2n=2x=24) and compared these with patterns in N. tabacum (tobacco, 2n=4x=48). We also examined a long-established N. tabacum culture, TBY-2. Nicotiana tabacum is an allotetraploid thought to be derived from ancestors of N. sylvestris (S-genome donor) and N. tomentosiformis (T-genome donor). Nicotiana sylvestris has three rDNA loci, one locus each on chromosomes 10, 11, and 12. In root-tip meristematic interphase cells, the site on chromosome 12 remains condensed and inactive, while the sites on chromosomes 10 and 11 show activity at the proximal end of the locus only. Nicotiana tomentosiformis has one major locus on chromosome 3 showing activity and a minor, inactive locus on chromosome 11. In N. tabacum cv. 095-55, there are four rDNA loci on T3, S10, S11/t and S12 (S11/t carries a small T-genome translocation). The locus on S12 remains condensed and inactive in root-tip meristematic cells while the others show activity, including decondensation at interphase and secondary constrictions at metaphase. Nicotiana tabacum DNA digested with methylcytosine-sensitive enzymes revealed a hybridisation pattern for rDNA that resembled that of N. tomentosiformis and not N. sylvestris. The data indicate that active, undermethylated genes are of the N. tomentosiformis type. Since S-genome chromosomes of N. tabacum show rDNA expression, the result indicates rDNA gene conversion of the active rDNA units on these chromosomes. Gene conversion in N. tabacum is consistent with the results of previous work. However, using primers specific for the S-genome rDNA intergenic sequences (IGS) in the polymerase chain reaction (PCR) show that rDNA gene conversion has not gone to completion in N. tabacum. Furthermore, using methylation-insensitive restriction enzymes we demonstrate that about 8% of the rDNA units remain of the N. sylvestris type (from ca. 75% based on the sum of the rDNA copy numbers in the parents). Since the active genes are likely to be of an N. tomentosiformis type, the N. sylvestris type units are presumably contained within inactive loci (i.e. on chromosome S12). Nicotiana sylvestris has approximately three times as much rDNA as the other two species, resulting in much condensed rDNA at interphase. This species also has three classes of IGS, indicating gene conversion has not homogenised repeat length in this species. The results suggest that methylation and/or DNA condensation has reduced or prevented gene conversion from occurring at inactive genes at rDNA loci. Alternatively, active undermethylated units may be vulnerable to gene conversion, perhaps because they are decondensed and located in close proximity within the nucleolus at interphase. In TBY-2, restriction enzymes showed hybridisation patterns that were similar to, but different from, those of N. tabacum. In addition, TBY-2 has elevated rDNA copy number and variable numbers of rDNA loci, all indicating rDNA evolution in culture. Received: 17 November 1999; in revised form: 3 February 2000 / Accepted: 3 February 2000  相似文献   

20.
The structure and organization of the 5S ribosomal DNA units of the silver fir, Abies alba Mill., as well as their position in the chromosome complement were investigated. PCR amplification of the gene and nontranscribed spacer region, sequence analysis and Southern hybridization, using a homologous probe, detected DNA sequences of approximately 550 bp and 700 bp. Sequence analysis of the spacers revealed that the difference in length between the sequences occurred in the middle spacer region as a result of the amplification of a 75-bp sequence of the short unit class, which is organized in four 54- to 68-bp tandem repeats in the long spacer unit. The 5S rDNA transcribed region is 120 bp long and shows high sequence similarity with other gymnosperm species. The comparative analysis of 5 and 3 flanking sequences of 5S rRNA genes of silver fir and other gymnosperms indicates that A. alba spacer units have the same rate of evolution and are more closely related to Larix and Pseudotsuga than to Pinus and Picea. Southern hybridization and fluorescence in situ hybridization of metaphase chromosomes of A. alba suggest that the short and long spacer units are organized as separate tandem arrays at two chromosomal loci on chromosomes V and XI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号