首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The emission from the plasma of a steady-state electric discharge in a He/H2O mixture in the wavelength range 130–670 nm is investigated. It is shown that, at a water vapor partial pressure of P=2.0–2.5 kPa, the discharge mainly emits within the range 306–315 nm. The emission consists of an OH (A-X; 0-0) 307.4-nm narrow peak and a broad band with a maximum at λmax=309.1 nm. As the partial pressure of water vapor decreases to 50–150 Pa, VUV emission at wavelengths of λ=186, 180, and 157 nm becomes dominant. In the visible region, Hα 656.3-nm and Hβ 486.1-nm spectral lines and HeI lines in the range 447.1–667.8 nm, which are of interest for diagnosing the plasma, prevail. The intensities of the main bands and spectral lines are determined as functions of the helium partial pressure and discharge current.  相似文献   

2.
Abstract

Effects of DNA fragments end structures on their melting profiles were studied experimentally and theoretically. We examined melting of hairpins and dumbbells obtained from 62- bp-long linear DNA duplex which is a perfect palindromic sequence. To fit theoretical melting profile to experimental ones additional theoretical parameters were incorporated into the standard statistical mechanical helix-coil transition theory. From comparison theoretical and experimental melting profiles theoretical parameters connected with end- structure effects were evaluated. Analysis revealed the stabilization effect of the hairpin loops and helix ends with respect to DNA duplex melting. Both type of ends make melting these oligodeoxynucleotides more cooperative than predicted by the standard helix-coil transition theory. At low ionic strength ([Na+] < 0.04 M) this effect becomes so pronounced that melting of the DNA duplexes 30–40 bp-long conforms to the two state model.

From the analysis experimental data obtained for dumbbell structures loop-weighting factor for single-stranded loop consisting of 132 nucleotides was determined. This parameter decreases 10 times with the ionic strength decreasing by an order of magnitude from 0.2 to 0.02 M Na+.  相似文献   

3.
The experiments carried out at the FT-2 tokamak in which additional pulsed puffing of helium into the hydrogen plasma was used for diagnostic purposes are considered. To estimate the necessary content of helium ions in the experiments on studying short-scale plasma oscillations, the ionization-recombination balance was simulated numerically under the assumption of a toroidally homogeneous influx of the working gas onto the boundary of the plasma column. In these simulations, the effective density of the neutral gas incident on the plasma boundary was determined by the iteration method, which made it possible to provide agreement between the obtained solution and the experimental discharge conditions. In particular, the correspondence of the determined admixture content to both the plasma quasineutrality condition and the value of the effective charge Z eff, as well as agreement between the calculated and measured plasma density profiles, was ensured. The simulations were performed under the assumption of anomalous diffusion coefficients for all plasma components. The temporal variations of the ionization-recombination balance were checked by comparing them with the measured spectra of radiation in the HeI, HeII, and H?? lines. In the current drive experiments, variations in n e (r) at the discharge periphery were examined by the method based on the proportionality of the intensity ratio of the helium spectral lines, HeI(668 nm)/HeI(728 nm), to the plasma density. In these calculations, the factors relating the intensity ratio of these lines to the plasma density were taken from the literature on spectral diagnostics.  相似文献   

4.
In cardiomyocyte subcellular structures, colocalization of mitochondria with Ca2+ release sites is implicated in regulation of cardiac energetics by facilitating Ca2+ influx into mitochondria to modulate the tricarboxylic acid (TCA) cycle. However, current experimental techniques limit detailed examination of this regulatory mechanism. Earlier, we developed a three-dimensional (3D) finite-element cardiomyocyte model featuring a subcellular structure that integrates excitation-contraction coupling and energy metabolism. Here, using this model, we examined the influence of distance between mitochondria and Ca2+ release sites by comparing a normal (50-nm) distance model and a large (200-nm) distance model (LD). The influence of distance was minimal under a low pacing rate (0.25 Hz), but under a higher pacing rate (2 Hz), lower levels of mitochondrial Ca2+ and NADH, elevated phosphate, and suppressed force generation became apparent in the LD model. Such differences became greater when functional impairments (reduced TCA cycle activity, uncoupling effect, and failing excitation-contraction coupling) were additionally imposed. We concluded that juxtaposition of the mitochondria and the Ca2+ release sites is crucial for rapid signal transmission to maintain cardiac-energy balance. The idealized 3D model of cardiac excitation-contraction and metabolism is a powerful tool to study cardiac energetics.  相似文献   

5.
Results are presented from experimental and theoretical studies of the efficiency of using a CO2 laser to create a high-power source of 13- to 14-nm EUV radiation for lithography. For a laser intensity of ∼2 × 1011 W/cm2, a conversion efficiency of k EUV ≃ 1.5% was achieved on a plane solid Sn target. The calculated gas dynamics and population kinetics of Sn plasma ions agree qualitatively with experimental results.  相似文献   

6.
A comparison between laser ablation of nickel in vacuum by using 532-and 1064-nm Nd:YAG (Yttrium Aluminium Garnet) laser wavelengths, with an intensity of 5 × 109 W/cm2, is reported. Nanosecond pulsed ablation produces high nonisotropic emission of neutrals and ionic species. For 532-nm laser irradiation, mass quadrupole spectrometry, coupled to electrostatic ion deflection and time-of-flight measurements, allows estimation of the energy distributions of the emitted species from plasma. For 1064-nm laser ablation, a cylindrical electrostatic ion analyzer permits one to measure the yield and the charge state of the emitted ions and reconstruct the ion energy and charge state distributions. Neutrals show typical Boltzmann-like distributions, while ions show Coulomb-Boltzmann-shifted distributions depending on their charge state. Surface profiles of the ablated craters permitted study of the ablation threshold and yields of nickel in vacuum versus the laser fluence. The plasma temperature was evaluated using experimental data. Special regard is given to the ion acceleration process occurring inside the plasma due to the high electrical field generated at nonequilibrium plasma conditions and the angular distribution of the emitted species. Published in Russian in Fizika Plazmy, 2008, Vol. 34, No. 7, pp. 598–606. The text was submitted by the authors in English.  相似文献   

7.
The physicochemical and bactericidal properties of thin silver films have been analysed. Silver films of 3 and 150 nm thicknesses were fabricated using a magnetron sputtering thin-film deposition system. X-ray photoelectron and energy dispersive X-ray spectroscopy and atomic force microscopy analyses confirmed that the resulting surfaces were homogeneous, and that silver was the most abundant element present on both surfaces, being 45 and 53 at.% on the 3- and 150-nm films, respectively. Inductively coupled plasma time of flight mass spectroscopy (ICP-TOF-MS) was used to measure the concentration of silver ions released from these films. Concentrations of 0.9 and 5.2 ppb were detected for the 3- and 150-nm films, respectively. The surface wettability of the films remained nearly identical for both film thicknesses, displaying a static water contact angle of 95°, while the surface free energy of the 150-nm film was found to be slightly greater than that of the 3-nm film, being 28.8 and 23.9 mN m−1, respectively. The two silver film thicknesses exhibited statistically significant differences in surface topographic profiles on the nanoscopic scale, with R a, R q and R max values of 1.4, 1.8 and 15.4 nm for the 3-nm film and 0.8, 1.2 and 10.7 nm for the 150-nm film over a 5 × 5 μm scanning area. Confocal scanning laser microscopy and scanning electron microscopy revealed that the bactericidal activity of the 3-nm silver film was not significant, whereas the nanoscopically smoother 150-nm silver film exhibited appreciable bactericidal activity towards Pseudomonas aeruginosa ATCC 9027 cells and Staphylococcus aureus CIP 65.8 cells, obtaining up to 75% and 27% sterilisation effect, respectively.  相似文献   

8.
The development of noninvasive approaches to facilitate the regeneration of post-traumatic nerve injury is important for clinical rehabilitation. In this study, we investigated the effective dose of noninvasive 808-nm low-level laser therapy (LLLT) on sciatic nerve crush rat injury model. Thirty-six male Sprague Dawley rats were divided into 6 experimental groups: a normal group with or without 808-nm LLLT at 8 J/cm2 and a sciatic nerve crush injury group with or without 808-nm LLLT at 3, 8 or 15 J/cm2. Rats were given consecutive transcutaneous LLLT at the crush site and sacrificed 20 days after the crush injury. Functional assessments of nerve regeneration were analyzed using the sciatic functional index (SFI) and hindlimb range of motion (ROM). Nerve regeneration was investigated by measuring the myelin sheath thickness of the sciatic nerve using transmission electron microscopy (TEM) and by analyzing the expression of growth-associated protein 43 (GAP43) in sciatic nerve using western blot and immunofluorescence staining. We found that sciatic-injured rats that were irradiated with LLLT at both 3 and 8 J/cm2 had significantly improved SFI but that a significant improvement of ROM was only found in rats with LLLT at 8 J/cm2. Furthermore, the myelin sheath thickness and GAP43 expression levels were significantly enhanced in sciatic nerve-crushed rats receiving 808-nm LLLT at 3 and 8 J/cm2. Taken together, these results suggest that 808-nm LLLT at a low energy density (3 J/cm2 and 8 J/cm2) is capable of enhancing sciatic nerve regeneration following a crush injury.  相似文献   

9.
Photoreactivation (PR) after 365-nm inactivation was measured in four strains of Escherichia coli differing in repair capability. Photoreactivation was observed in the recA strains K12 and AB2480 and K12 AB2463 indicating a significant role of pyrimide dimers in the lethal action of 365-nm radiation in these strains. Significant PR was not observed in the uvrA strain, K12 AB1886, or in the repair proficient strain, K12 AB1157, after 265-nm inactivation. Biological evidence indicated that stationary phase cells had not lost the capacity for photo-enzymatic repair after fluences of 365-nm radiation of 2 × 106 J/m−2 or less. It is proposed that pyrimidine dimers, although induced, are not significant 365-nm lethal lesions in uvrA and wild-type strains because of their efficient dark repair.  相似文献   

10.
Ultraviolet (UV) irradiation has high potential to inactivate a wide range of biologic agents and is one of several nonadditive technologies being studied. The photoinactivation property of pulsed UV laser radiation (at wavelengths of 355 and 266 nm), used as an effective physical means to inactivate two typical microorganisms, prokaryotic (Escherichia coli K12) and eukaryotic (Saccharomyces cerevisiae), with respect to dose and exposure times, was examined. An E. coli population of 1.6 × 104 colony-forming units (CFU)/ml was inactivated with a dose of 16.7 J/cm2 energy at 355-nm wavelength. However, E. coli cells at higher concentrations were inactivated by only 98% using the same dose. Interestingly, an E. coli population of 2 × 107 CFU/ml was completely inactivated using only 0.42 J/cm2 at 266-nm wavelength (P ≤ 0.05). With respect to S. cerevisiae, the results were similar to those of E. coli irradiation considering that S. cerevisiae is 100 times larger than E. coli. A dose of 16.7 J/cm2 completely inactivated an S. cerevisiae population of 6 × 103 CFU/ml at 355-nm wavelength. Exposure to 266-nm wavelength, with energy doses of 1.67, 0.835, and 0.167 J/cm2, successfully inactivated S. cerevisiae populations of 3 × 106, 1.4 × 105, and 1.5 × 104 CFU/ml, respectively (P ≤ 0.05). In conclusion, compared with 355-nm wavelength, a pulsed UV laser at 266-nm wavelength inactivated a high titer of bacterial and yeast indicator standards suspended in phosphate-buffered saline-A.  相似文献   

11.
Two hundred twenty-two nanometres ultraviolet (UV) light produced by a krypton–chlorine excimer lamp is harmful to bacterial cells but not skin. However, the effects of 222-nm UV light exposure to the eye are not fully known. We evaluated acute corneal damage induced by 222- and 254-nm UV light in albino rats. Under deep anaesthesia, 6-week-old Sprague–Dawley albino rats were exposed to UV light. The exposure levels of corneal radiation were 30, 150, and 600?mJ/cm2. Epithelial defects were detected by staining with fluorescein. Superficial punctate keratitis developed in corneas exposed to more than 150?mJ/cm2 of UV light, and erosion was observed in corneas exposed to 600?mJ/cm2 of UV light. Haematoxylin and eosin staining also showed corneal epithelial defects in eyes exposed to 254-nm UV light. However, no damage developed in corneas exposed to 222-nm UV light. Cyclobutane pyrimidine dimer-positive cells were observed only in normal corneas and those exposed to 254-nm UV light. Although some epithelial cells were stained weakly in normal corneas, squamous epithelial cells were stained moderately, and the epithelial layer that was detached from the cornea exposed to 600?mJ/cm2 of light was stained intensely in corneas exposed to 254-nm UV light. In the current study, no corneal damage was induced by 222-nm UV light, which suggested that 222-nm UV light may not harm rat eyes within the energy range and may be useful for sterilising or preventing infection in the future.  相似文献   

12.
Resonance Raman spectra of the nucleoside 5′-monophosphates UMP, CMP, AMP, and GMP have been obtained with 266- and 213-nm radiation, the fourth and fifth harmonics of a Nd:YAG laser. The 266-nm radiation is resonant with the states giving rise to the first absorption band of the bases. The resulting spectra are in agreement with those reported previously using similar wavelength excitation but are generally of better quality. The 213-nm radiation is resonant with those states giving rise to the second strong absorption band of the bases. The spectra obtained with this wavelength show several new features relative to the 266-nm spectra, including strong enhancement of modes of the pyrimidines with a character similar to the e2g ν8 mode of benzene, relative enhancement of ring modes at 1580 and 729 cm?1 in AMP, and strong enhancement of the 1670-cm?1 C = O mode of GMP. These enhancements are discussed in terms of previously reported preresonance behavior and predicted intensities based on CNDO bond-order changes and normal-mode calculations. The results of a preliminary study of the effect of the interaction of GMP with cis-dichlorodiammineplatinum(II) on the 213-nm resonance Raman spectrum is also discussed.  相似文献   

13.
《Biophysical journal》2021,120(23):5322-5332
The electrostatic interaction of RNA with its aqueous environment is most relevant for defining macromolecular structure and biological function. The attractive interaction of phosphate groups in the RNA backbone with ions in the water environment leads to the accumulation of positively charged ions in the first few hydration layers around RNA. Electrostatics of this ion atmosphere and the resulting ion concentration profiles have been described by solutions of the nonlinear Poisson-Boltzmann equation and atomistic molecular dynamics (MD) simulations. Much less is known on contact pairs of RNA phosphate groups with ions at the RNA surface, regarding their abundance, molecular geometry, and role in defining RNA structure. Here, we present a combined theoretical and experimental study of interactions of a short RNA duplex with magnesium (Mg2+) ions. MD simulations covering a microsecond time range give detailed hydration geometries as well as electrostatics and spatial arrangements of phosphate-Mg2+ pairs, including both pairs in direct contact and separated by a single water layer. The theoretical predictions are benchmarked by linear infrared absorption and nonlinear two-dimensional infrared spectra of the asymmetric phosphate stretch vibration which probes both local interaction geometries and electric fields. Contact pairs of phosphate groups and Mg2+ ions are identified via their impact on the vibrational frequency position and line shape. A quantitative analysis of infrared spectra for a range of Mg2+-excess concentrations and comparison with fluorescence titration measurements shows that on average 20–30% of the Mg2+ ions interacting with the RNA duplex form contact pairs. The experimental and MD results are in good agreement. In contrast, calculations based on the nonlinear Poisson-Boltzmann equation fail in describing the ion arrangement, molecular electrostatic potential, and local electric field strengths correctly. Our results underline the importance of local electric field mapping and molecular-level simulations to correctly account for the electrostatics at the RNA-water interface.  相似文献   

14.
A systematic study was made of the spectrum for exciting long-wave-length fluorescence (at 77°K) during the first 100 hr of greening in Euglena gracilis. A band at 705-710 nm is observable after cells have been greening in light for 30 hr. The ratio of the 705-nm to the 675-nm peak increases during greening, reaching a maximum value at 85 hr, then declining. With concentrated solutions of chlorophyll a, fluorescence excitation spectra are similar to those observed in vivo. The ratio of aggregate to monomer bands increases with concentration of chlorophyll, reaching a maximum value in ethanol and in pyridine at about 3 × 10-2 M and 6 × 10-2 M respectively, then declining. Several model systems were analyzed. It is shown that the band observed in solution with maximum at 705-710 nm is not an artifact of the fluorescence apparatus; it does not arise from undissolved chlorophyll; it does not arise from a fluorescent or nonfluorescent impurity; it does not arise solely from light absorption by a dimer or larger aggregate of chlorophyll. Agreement is obtained between the experimental observations and the results of a mathematical model by including terms for the efficiency of energy transfer from monomeric to dimeric chlorophyll, as well as for the formation of dimers by an equilibrium reaction.  相似文献   

15.
The spatial, electrical, and optical characteristics of a transverse glow discharge and a volume discharge with a spherical anode and plane cathode in low-pressure Xe/Cl2 mixtures are studied. It is shown that the transverse glow discharge in mixtures with a low chlorine content occupies most of the interelectrode gap and exists in the form of strata. As the total pressure (P≥300 Pa) and the partial chlorine pressure (P(Cl2)≥80 Pa) increase, a solitary plasma domain with a volume of 1–2 cm3 forms in the discharge gap. It acts as a selective source of UV radiation in the XeCl(D-X) 236-nm, Cl2 (D′-A′) 257-nm, and XeCl(B-X) 308-nm bands. In certain Xe/Cl2 mixtures, plasma self-oscillations in the frequency range 1–100 kHz are observed. The current of a low-pressure volume discharge with a spherical anode and plane cathode and the emission from it have both a dc and an ac component. The pressure and composition of the working mixture, as well as the average current of the volume discharge are optimized to attain the maximum emission intensity of the XeCl(D,B-X) bands. Low-pressure volume discharges in xenon/chlorine mixtures can be used as active media in low-pressure large-aperture planar or cylindrical excimer-halogen lamps emitting modulated or repetitive pulsed UV radiation.  相似文献   

16.
Results are presented from experimental studies of variations in the plasma parameters during the excitation of a multiaxis magnetic configuration by the induction current (up to 17 kA) in the basic magnetic configuration of the L-2M stellarator in the regime of ECR heating at a microwave power of ~200 kW (~1 MW m?3) and an average plasma density of (1–2) × 1019 m?3. The current direction was chosen to reduce the net rotational transform (the so-called “negative“ current). The current was high enough for the rotational transform to change its sign inside the plasma column. Computer simulations of the L-2M magnetic structure showed that the surface with a zero rotational transform is topologically unstable and gives rise to magnetic islands, i.e., to a multiaxis magnetic configuration. Magnetic measurements showed that, at negative currents above 10 kA, intense bursts of MHD oscillations with a clearly defined toroidal mode number n = 0 were observed in the frequency range of several kilohertz. Unfortunately, the experimental data are insufficient to draw the final conclusion on the transverse structure of these oscillations. The radial temperature profiles along the stellarator major radius in the equatorial plane were studied. It is found that the electron temperature decreases by a factor of 1.3 in the plasma core (r/a ≤ 0.6) and that the temperature jump is retained near the boundary. A change in turbulent fluctuations of the plasma density during the excitation of a negative current was studied using wave scattering diagnostics. It is found that the probability density function of the increments of fluctuations in the plasma core differs from a Gaussian distribution. The measured distribution is heavy-tailed and broadens in the presence of the current. It is found that the spectrum of turbulent fluctuations and their Doppler shift near the plasma boundary are nonuniform in the radial direction. This may be attributed to the shear of the poloidal velocity. The experimental results indicate that the formation of regions with a zero rotational transform in the plasma core somewhat intensifies plasma transport.  相似文献   

17.
18.
In a medical cyclotron facility, 41Ar (t1/2 = 109.34 m) is produced by the activation of air due to the neutron flux during irradiation, according to the 40Ar(n,γ)41Ar reaction; this is particularly relevant in widely diffused high beam current cyclotrons for the production of PET radionuclides. While theoretical estimations of the 41Ar production have been published, no data are available on direct experimental measurements for a biomedical cyclotron. In this work, we describe a sampling methodology and report the results of an extensive measurement campaign. Furthermore, the experimental results are compared with Monte Carlo simulations performed with the FLUKA code. To measure 41Ar activity, air samples were taken inside the cyclotron bunker in sealed Marinelli beakers, during the routine production of 18F with a 16.5 MeV GE-PETtrace cyclotron; this sampling thus reproduces a situation of absence of air changes. Samples analysis was performed in a gamma-ray spectrometry system equipped with HPGe detector. Monte Carlo assessment of the 41Ar saturation yield was performed directly using the standard FLUKA score RESNUCLE, and off-line by the convolution of neutron fluence with cross section data. The average 41Ar saturation yield per one liter of air of 41Ar, measured in gamma-ray spectrometry, resulted to be 3.0 ± 0.6 Bq/µA*dm3 while simulations gave a result of 6.9 ± 0.3 Bq/µA*dm3 in the direct assessment and 6.92 ± 0.22 Bq/µA*dm3 by the convolution neutron fluence-to-cross section.  相似文献   

19.
K Kubota  Y Tominaga  S Fujime 《Biopolymers》1987,26(10):1717-1729
Dynamic light-scattering measurements were carried out for collagen in acetate buffer (pH 4.8) extracted from lathyritic ratskin. The correlation functions were analyzed in terms of the semiflexibility of collagen molecules. The experimental Γ /K2 vs K2 relationship was compared with the theoretical one based on formulation including anisotropy in translational diffusion, chain flexibility, and the hydrodynamic interaction; Γ is the average decay rate and K is the magnitude of the momentum transfer vector. By using the model parameters evaluated from the Γ /K2 vs K2 relationship, a good agreement was obtained between profiles of theoretical and experimental correlation functions over the entire delay times. Detailed examinations of the dynamic light-scattering spectrum permitted us to conclude that a set of the contour length L of 300 nm and the Kuhn length γ?1 of 340 nm are much more probable than other sets of L and γ?1 that equally explain static quantities such as the radius of gyration. The results show that collagen molecules are well characterized by a wormlike chain model.  相似文献   

20.
This study assessed the effects of high-intensity violet light on selected yeast and mould fungi. Cell suspensions of Saccharomyces cerevisiae, Candida albicans, and dormant and germinating spores (conidia) of the mould Aspergillus niger were exposed to high-intensity narrow band violet light with peak output at 405 nm generated from a light-emitting diode (LED) array. All three fungal species were inactivated by the 405-nm light without a requirement for addition of exogenous photosensitiser chemicals. Of the fungal species tested, S. cerevisiae was most sensitive and dormant conidia of A. niger were most resistant to 405-nm light exposure. Five-log10 colony forming units per millilitre (CFU ml?1) reductions of the tested species required exposure doses of 288 J cm?2 for S. cerevisiae, 576 J cm?2 for C. albicans, and a much higher value of 2.3 kJ cm?2 for dormant conidia of A. niger. During germination, A. niger conidia became more sensitive to 405-nm light exposure and sensitivity increased as germination progressed over an 8 h test period. Light exposure under aerobic and anaerobic conditions, together with results obtained using ascorbic acid as a scavenger of reactive oxygen species, revealed that 405-nm light inactivation in fungi involved an oxygen-dependent mechanism, as previously described in bacteria. The inactivation results achieved with yeast cells and fungal spores together with operational advantages associated with the use of a visible (nonultraviolet (UV)) light source highlight the potential of 405-nm light for fungal decontamination applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号