首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Thirty-seven strains of HeLa cells were examined for their ability to synthesize human chorionic gonadotropin (hCG) and its alpha subunit (hCG-α) in culture. Synthesis of hCG-α and hCG also was investigated in the presence of sodium butyrate and 5-bromo-2′-deoxyuridine (BrdUrd). All HeLa strains synthesized hCG-α in culture. Sodium butyrate increased the synthesis of hCG-α in all HeLa cells; BrdUrd increased synthesis in 32 of the 37 strains examined. Although few HeLa strains synthesized hCG in the absence of inducers, hCG was detected in most strains in the presence of sodium butyrate. The synthesis of hCG and its alpha subunit is, therefore, a stable genetic characteristics of HeLa cells. Certain preparations of hCG and its subunits were generously provided through the Center for Population Research of the National Institute of Child Health and Human Development, NIH.  相似文献   

2.
Sodium butyrate and hydroxyurea, effective inhibitors of DNA synthesis in HeLa cells, cause these cells to produce increased levels of the ectopic glycopeptide hormones human chorionic gonadotropin (hCG), follicle stimulating hormone (FSH), and free alpha chains for these hormones. The objective of this study was an assessment of the role of modulation of cell cycle events in the action of these two chemical agents. A variety of experimental approaches was employed to obtain a clear view of the drugs' effects on cells located initially in all phases of the cell cycle. Cells in early G1, G2, or M phase at time of addition of either inhibitor were not arrested at early time points, but by 48 hours became collected at a location characteristic for each drug, near the G1-S phase boundary. Flow microfluorometry (FMF) and thymidine labeling index revealed that butyrate-treated cells arrested late in G1 phase very close to S phase, while hydroxyurea-blocked cells continued to early S phase. Both inhibitors prevented cells originally in S phase from reaching mitosis. S cells exposed to hydroxyurea were killed by 48 hours, but those growing in 5 mM butyrate progressed to the end of S or G2 phase where they became irreversibly arrested although not removed from the monolayer. Analysis of the cell cycle location and viability of each subpopulation resulting from 48 hour exposure to butyrate or hydroxyurea is important for the study of the function of each cellular subset. Treatment of HeLa cells with lower concentrations of butyrate (1 mM) resulted in slowed yet exponential growth. Fraction labeled mitosis (FLM) analysis shows that this is a result of prolongation of the G1 phase.  相似文献   

3.
4.
Butyric acid produces multiple effects on mammalian cells in culture, including alterations in morphology, depression of growth rate, increased histone acetylation, and modified production of various proteins and enzymes. The latter effect is exemplified by the induction in HeLa cells of the glycoprotein hormone alpha subunit by millimolar concentrations of the fatty acid. This report demonstrates that increased subunit accumulation in response to sodium butyrate is strikingly dependent on the presence of glucose (or mannose) in the growth medium. In contrast, basal levels of subunit synthesis are only marginally affected when the culture medium is supplemented with one of a variety of hexoses. An increase in the accumulation of HeLa alpha does not occur in medium containing pyruvate as the energy source, and sustained induction requires the simultaneous and continued presence of both glucose and butyrate. The effects of butyrate on HeLa cell morphology and subunit induction can be separated, since the latter is glucose-dependent while the former is not. Failure of butyrate to induce alpha in medium containing pyruvate does not result from restricted subunit secretion, since the levels of intracellular alpha are not increased disproportionately relative to those in the medium. The hexoses which support induction of HeLa alpha (glucose greater than or equal to mannose greater than galactose greater than fructose) are identical to those which have been shown previously to stimulate the glucosylation of lipid-linked oligosaccharides and enhance the synthesis of certain glycoproteins. Labeling of various glycosylation intermediates with [3H]mannose indicates that in glucose medium there is a decrease in the level of radioactivity associated with both dolicholpyrophosphoryl oligosaccharide and cellular glycoproteins and a concomitant increase in the fraction of label recovered in secreted glycoproteins. Butyrate also causes a decrease in [3H]mannose-labeled cellular glycoproteins and an increase in tritiated extracellular glycoproteins, particularly in glucose medium. Likewise, glucose stimulates the incorporation of [3H]glucosamine into immunoprecipitable alpha subunit relative to the bulk of HeLa-secreted glycoproteins, and this is further enhanced by butyrate. However, as demonstrated by lectin chromatography of conditioned media, a nonglycosylated subunit does not accumulate in pyruvate medium, either in the absence or presence of butyrate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
6.
Several cell lines, originally thought to be derived from a human placenta at term but possibly HeLa-contaminated, have been studied. These cells secrete a protein indistinguishable immunochemically from the alpha subunit of chorionic gonadotropin but not the beta subunit of chorionic gonadotropin or placental lactogen. Complete chorionic gonadotropin was detected but amounted to less than 1% of the level of the alpha subunit. The cells also produce an alkaline phosphatase similar to placental alkaline phosphatase in immunochemical, gel-electrophoretic, and heat-denaturation properties. They induce tumor growth when inoculated into nude mice. These cells are aneuploid and have a model chromosome number of 66. The common HeLa karyologic markers, designated 1, 2, and 3, and A-type glucose-6-phosphate dehydrogenase are present in these cells. HeLa cells have not previously been shown to secrete the alpha subunit of hCG.  相似文献   

7.
We have analyzed the regulation of the alpha gonadotropin gene in eutopic placental cells and ectopic tumor cells by constructing a series of plasmid vectors containing alpha genomic 5' flanking DNA placed upstream of the gene encoding the bacterial enzyme chloramphenicol acetyltransferase (CAT). These plasmid DNAs were transfected into a eutopic (JAr) and an ectopic (HeLa) cell line. Both cell types expressed the CAT gene from plasmid constructs containing as much as 1,500 base pairs (bp) and as little as 140 bp of alpha 5' flanking DNA; JAr cells were considerably more efficient than HeLa cells. Ectopic and eutopic cells differed qualitatively in their expression from these alpha-CAT constructs when cells were treated with cAMP or butyrate. Butyrate induced alpha expression in HeLa cells but not in JAr cells, while cAMP induced expression in JAr cells. These results are consistent with and extend previous observations suggesting that there are cell-specific differences in the regulation of alpha gene expression in ectopic and eutopic cells. However, by using deletion constructs of the alpha-CAT gene, we found that the basal expression and cell-specific induction of the alpha gene in ectopic and eutopic cells were dependent on the same 140 bp of alpha 5' flanking DNA. These 140 bp were sequenced and found to contain a 9-bp stretch of DNA homologous with the consensus viral enhancer sequence. Such features of alpha expression common to both ectopic and eutopic cells may be involved in the coordinate expression of the alpha gene and the tumorigenic phenotype observed in each cell type.  相似文献   

8.
9.
Summary Several cell lines, originally thought to be derived from a human placenta at term but possibly HeLa-contaminated, have been studied. These cells secrete a protein indistinguishable immunochemically from the alpha subunit of chorionic gonadotropin but not the beta subunit of chorionic gonadotropin or placental lactogen. Complete chorionic gonadotropin was detected but amounted to less than 1% of the level of the alpha subunit. The cells also produce an alkaline phosphatase similar to placental alkaline phosphatase in immunochemical, gel-electrophoretic, and heat-denaturation properties. They induce tumor growth when inoculated into nude mice. These cells are aneuploid and have a model chromosome number of 66. The common HeLa karyologic markers, designated 1, 2, and 3, and A-type glucose-6-phosphate dehydrogenase are present in these cells. HeLa cells have not previously been shown to secrete theα subunit of hCG.  相似文献   

10.
The effects of sodium butyrate on [3H]thymidine incorporation and cell growth characteristics in randomly growing and synchronized HeLa S3 cells have been examined in an attempt to determine what effects, if any, butyrate has on S phase cells. Whereas 5 mM sodium butyrate rapidly inhibits [5H]thymidine incorporation in a randomly growing cell populations, it has no effect on incorporation during the S phase in cells synchronized by double thymidine block techniques. This lack of effect does not result from an impaired ability of the S phase cells to take up butyrate, since butyrate administration during this period leads to histone hyperacetylation that is identical with that seen with butyrate treatment of randomly growing cells. Furthermore, the ability to induce such hyperacetylation with butyrate during an apparently normal progression through S phase indicates that histone hyperacetylation probably has no effect on the overall process of DNA replication. Temporal patterns of [3H]thymidine incorporation and cell growth following release from a 24-h exposure to butyrate confirm blockage of cell growth in the G1 phase of the cell cycle. Thus, the inhibition by butyrate of [3H]thymidine incorporation in randomly growing HeLa S3 cell populations can be accounted for solely on the basis of a G1 phase block, with no inhibitory effects on cells already engaged in DNA synthesis or cells beyond the G1 phase block at the time of butyrate administration.  相似文献   

11.
Cell-specific expression of a transfected human alpha 1-antitrypsin gene   总被引:52,自引:0,他引:52  
G Ciliberto  L Dente  R Cortese 《Cell》1985,41(2):531-540
  相似文献   

12.
We have developed specific antibodies to synthetic peptide antigens that react with the individual subunits of casein kinase II (CKII). Using these antibodies, we studied the localization of CKII in asynchronous HeLa cells by immunofluorescence and immunoelectron microscopy. Further studies were done on HeLa cells arrested at the G1/S transition by hydroxyurea treatment. Our results indicate that the CKII alpha and beta subunits are localized in the cytoplasm during interphase and are distributed throughout the cell during mitosis. Further electron microscopic investigation revealed that CKII alpha subunit is associated with spindle fibers during metaphase and anaphase. In contrast, the CKII alpha' subunit is localized in the nucleus during G1 and in the cytoplasm during S. Taken together, our results suggest that CKII may play significant roles in cell division control by shifting its localization between the cytoplasm and nucleus.  相似文献   

13.
14.
15.
HDAC inhibitors have been proposed as radiosensitizers in cancer therapy. Their application would permit the use of lower radiation doses and would reduce the adverse effects of the treatment. However, the molecular mechanisms of their action remain unclear. In the present article, we have studied the radiosensitizing effect of sodium butyrate on HeLa cells. FACS analysis showed that it did not abrogate the γ-radiation imposed G2 cell cycle arrest. The dynamics of γ-H2AX foci disappearance in the presence and in the absence of butyrate, however, demonstrated that butyrate inhibited DSB repair. In an attempt to clarify which one of the two major DSBs repair pathways was affected, we synchronized HeLa cells in G1 phase and after γ-irradiation followed the repair of the DSBs by agarose gel electrophoresis. Since HR is not operational during G1 phase, by this approach we determined the rates of NHEJ only. The results showed that NHEJ decreased in the presence of butyrate. In another set of experiments, we followed the dynamics of disappearance of RAD51 foci in the presence and in the absence of butyrate after γ-radiation of HeLa cells. Since RAD51 takes part in HR only, this experiment allows the effect of butyrate on DSB repair by homologous recombination to be assessed. It showed that HR was also obstructed by butyrate. These results were confirmed by host cell reactivation assays in which the repair of plasmids containing a single DSB by NHEJ or HR was monitored. We suggest that after a DSB is formed, HDACs deacetylated core histones in the vicinity of the breaks in order to compact the chromatin structure and prevent the broken DNA ends from moving apart from each other, thus ensuring effective repair.  相似文献   

16.
17.
We investigated the role of p38alpha stress-kinase in regulation of premature senescence program, stimulated by histone deacetylase inhibitor--sodium butyrate (NaB)--after application to rodent transformed cell lines. Investigation was performed on the E1A + cHa-ras transformants selected from mice embryonic fibroblasts null at the p38alpha kinase gene or null fibroblasts at the PPM1D gene, which encoded phosphatase Wip1. Absence of Wip1 led to constitutive activation of p38alpha kinase. It was revealed that after NaB treatment both cell lines completely stopped proliferation due to irreversible cell cycle arrest in G1/S phase. In both cell lines sodium butyrate induced sustained block of prolifaration due to irreversible cell cycle arrest in G1/S phase. Following sodium butyrate treatment cells expressed marker of senescence--beta-galactosidase activity (SA-beta-Gal). Long-term (during several days) NaB treatment of cells led to partial restoration of actin cytoskeleton, focal adhesion contacts and heterochromatin focus formation (SAHF) in the nucleus of senescent cells. Obtained data allow us to suppose that irreversible process of cellular senescence activated by sodium butyrate can occur in the absence of functionally active p38 kinase by means of other ways of cell cycle suppression.  相似文献   

18.
Sodium butyrate (3 mM) inhibited the entry into the S phase of quiescent 3T3 cells stimulated by serum, but had no effect on the accumulation of cellular ribonucleic acid. Simian virus 40 infection or manual microinjection of cloned fragments from the simian virus 40 A gene caused quiescent 3T3 cells to enter the S phase even in the presence of butyrate. NGI cells, a line of 3T3 cells transformed by simian virus 40, grew vigorously in 3 mM butyrate. Homokaryons were formed between G1 and S-phase 3T3 cells, Butyrate inhibited the induction of deoxyribonucleic acid synthesis that usually occurs in B1 nuclei when G1 cells are fused with S-phase cells. However, when G1 3T3 cells were fused with exponentially growing NGI cells, the 3T3 nuclei were induced to enter deoxyribonucleic acid synthesis. In tsAF8 cells, a ribonucleic acid polymerase II mutant that stops in the G1 phase of the cell cycle, no temporal sequence was demonstrated between the butyrate block and the temperature-sensitive block. These results confirm previous reports that certain virally coded proteins can induce cell deoxyribonucleic acid synthesis in the absence of cellular functions that are required by serum-stimulated cells. Our interpretation of these data is that butyrate inhibited cell growth by inhibiting the expression of genes required for the G0 leads to G1 leads to S transition and that the product of the simian virus 40 A gene overrode this inhibition by providing all of the necessary functions for the entry into the S phase.  相似文献   

19.
Protein synthesis was inhibited in one line of interferon-treated HeLa cells (line 2) upon infection with reovirus, but not in different HeLa cells (line 1) treated in the same way. The inhibition resulted in polysome runoff, suggesting that it was due to an impairment of peptide chain initiation. Interferon induces the synthesis of a protein kinase, which is activated in cell-free systems by double-stranded RNA and phosphorylates the alpha subunit of eukaryotic initiation factor 2, thus inhibiting the initiation of protein synthesis. Therefore, we measured the level of this protein kinase in extracts prepared from the two HeLa cell lines. Cells of line 2 showed about 3-4 times more protein kinase activity than cells of line 1. The inhibition of protein synthesis upon infection with reovirus was correlated with an increased phosphorylation of the alpha subunit of eukaryotic initiation factor 2 in interferon-treated cells labeled with 32P. The kinase was presumably activated in intact cells by viral double-stranded RNA, but this activation resulted in inhibition of protein synthesis only in cells with elevated levels of the kinase.  相似文献   

20.
A mechanism for the control of protein synthesis by adenovirus VA RNAI   总被引:55,自引:0,他引:55  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号