首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 793 毫秒
1.
Hexahistidine tag (His-tag) is the most widely used tag for affinity purification of recombinant proteins for their structural and functional analysis. In the present study, single chain Fv (scFv) constructs were engineered form the monoclonal antibody (MAb) CC49 which is among the most extensively studied MAb for cancer therapy. For achieving efficient purification of scFvs by immobilized metal-ion affinity chromatography (IMAC), a His-tag was placed either at the C-terminal (scFv-His6) or N-terminal (His6-scFv) of the coding sequence. Solid-phase radioimmunoassay for scFv-His6 showed only 20-25% binding whereas both His6-scFv and scFv (no His-tag) showed 60-65% binding. Surface plasmon resonance studies by BIAcore revealed the binding affinity constant (KA) for His6-scFv and scFv as 1.19 x 10(6) M(-1) and 3.27 x 10(6) M(-1), respectively. No K(A) value could be calculated for scFv-His6 due to poor binding kinetics (kon and koff). Comparative homology modeling for scFv and scFv-His6 showed that the C-terminal position of the His-tag partially covered the antigen-binding site of the protein. The study demonstrates that the C-terminal position of His-tag on the CC49 scFv adversely affects the binding properties of the construct. The results emphasize the importance of functional characterization of recombinant proteins expressed with purification tags.  相似文献   

2.
Structural and functional characterization of proteins as well as the design of targeted drugs heavily rely on recombinant protein expression and purification. The polyhistidine-tag (His-tag) is among the most prominent examples of affinity tags used for the isolation of recombinant proteins from their expression hosts. Short peptide tags are commonly considered not to interfere with the structure of the tagged protein and tag removal is frequently neglected. This study demonstrates the formation of higher-order oligomers based on the example of two His-tagged membrane proteins, the dimeric arginine-agmatine antiporter AdiC and the pentameric light-driven proton pump proteorhodopsin. Size exclusion chromatography revealed the formation of tetrameric AdiC and decameric as well as pentadecameric proteorhodopsin through specific interactions between their His-tags. In addition, single particle cryo-electron microscopy (cryo-EM) allowed structural insights into the three-dimensional arrangement of the higher-order oligomers and the underlying His-tag-mediated interactions. These results reinforce the importance of considering the length and removal of affinity purification tags and illustrate how neglect can lead to potential interference with downstream biophysical or biochemical characterization of the target protein.  相似文献   

3.
Histidine-rich peptides are commonly used in recombinant protein production as purification tags, allowing the one-step affinity separation of the His-tagged proteins from the extracellular media or cell extracts. Genetic engineering makes feasible the post-purification His-tag removal by inserting, between the tag and the main protein body, a target site for trans-acting proteases or a self-proteolytic peptide with regulatable activities. However, for technical ease, His tags are often not removed and the fusion proteins eventually used in this form. In this commentary, we revise the powerful biological properties of histidine-rich peptides as endosomolytic agents and as architectonic tags in nanoparticle formation, for which they are exploited in drug delivery and other nanomedical applications. These activities, generally unknown to biotechnologists, can unwillingly modulate the functionality and biotechnological performance of recombinant proteins in which they remain trivially attached.  相似文献   

4.
We have developed a new T7-based vector system for rapid purification and high-throughput capability applicable for structural studies. The system allows purification of target proteins to homogeneity in two steps with a single Ni-affinity column. The first step relies on affinity purification of the N-terminal His-tagged protein in the conventional way, eluting the protein with imidazole. Addition of a His-tagged 3C protease to cleave the His-tag permits a second pass through the nickel column, this time all impurities bind to the column while the pure protein does not. This has the major advantage of quickly removing the residual contaminating proteins that are associated with nickel affinity purification as well as the protease and His-tag. Here, we describe the application of this system to over-express and purify ORF PA5104 from Pseudomonas aeruginosa. The protein was successfully crystallized and crystals were shown to diffract to atomic resolution. Additionally preliminary X-ray diffraction analysis of two crystals forms is presented, one diffracting to 1.9 A and the other to 0.96 A resolution.  相似文献   

5.
Lauer SA  Nolan JP 《Cytometry》2002,48(3):136-145
BACKGROUND: For ease of purification, proteins are often expressed with a short affinity sequence of five or six adjacent histidine residues (His-tag). This His-tag binds to the metal of metal chelator complexes such as Ni(2+)-nitrilotriacetic acid (Ni-NTA) or -iminodiacetic acid (Ni-IDA). Chromatography resins bearing covalently attached metal chelator complexes are used widely for the easy affinity purification of His-tagged proteins or peptides. Because Ni-NTA microspheres were not commercially available at the beginning of our studies, we prepared and characterized such microspheres to immobilize His-tagged proteins and study their interactions. Our microspheres are of three types: (a) metal chelator complexes bound covalently to polystyrene microspheres, (b) metal chelator complexes bound covalently to silica microspheres, and (c) lipid-linked metal chelator complexes adsorbed to silica microspheres forming self-assembled bilayer membranes where the metal chelators have lateral mobility. METHODS: The microspheres bearing covalently attached Ni-chelator were synthesized by reacting a primary amine-bearing Ni-NTA ligand with carboxy-functionalized microspheres and then loading with Ni(2+). Microspheres with laterally mobile metal chelator were made by incubating glass microspheres with liposomes containing phosphatidylcholine (PC) and the metal chelating lipid 1,2-dioleoyl-sn-glycero-3-[(N (5-amino-1-carboxypentyl)iminodiacetic acid)succinyl]. Binding of a His-tagged enhanced green fluorescent protein (EGFP) was used to characterize these microspheres by flow cytometry for their specificity, sensitivity, capacity and stability. RESULTS: While all micospheres specifically bind His-tagged proteins, the conditions to achieve this are different for the polystyrene- and silica-based spheres. All three types of microspheres bind His-EGFP with saturation occurring at 30-50 nM and an apparent avidity (concentration of half-maximal binding) of approximately 1 to 2 x 10(-8) M at pH 7.4. Binding of His-EGFP is inhibited by imidazole or ethylene-diaminetetraacetic acid (EDTA). Polystyrene Ni-NTA microspheres showed significant nonspecific binding as measured by binding in the presence of imidazole or EDTA or by binding of fluorescent proteins lacking a His-tag. This nonspecific binding of proteins to and aggregation of polystyrene spheres could only be prevented by the inclusion of low concentrations of Tween 20, but not by including bovine serum albumin (BSA), polyethylene glycols, or polyvinylpyrrolidones as blocking agents. In contrast, silica-based microspheres with covalently attached Ni-NTA or silica microspheres bearing adsorbed bilayers that contain Ni-NTA-lipid showed little nonspecific binding in the presence of BSA. Our results on the stability of immobilization indicate that washing destabilizes the binding of His-tagged proteins to Ni-NTA microspheres. This binding consists of two interactions of different affinities. We also demonstrate that limited multiplexed analysis with differently sized silica microspheres bearing the Ni-NTA-lipid is feasible. CONCLUSIONS: The microspheres described are well suited to selectively immobilize His-tagged proteins to analyze their interactions by flow cytometry. The affinity and kinetic stability of the interaction of His-tagged proteins with Ni-NTA are insufficient to use Ni-NTA microspheres in multiplexed analysis formats where different His-tagged proteins are bound to distinct microspheres. Improvements towards this end (improved chelators and/or improved affinity tags) are critical for extending the use of this method. We are currently working on novel chelators to strengthen the stability of immobilization of His-tagged proteins to surfaces. Such improvements would greatly enhance the analysis of interactions of immobilized His-tagged proteins and could make the development of microsphere-based arrays with His-tagged protein/antibody possible.  相似文献   

6.
Attachment of a hexa-His tag is a common strategy in recombinant protein production. The use of such a tag greatly simplifies the purification of the protein from the complex mixture of other proteins in the media or cell extract. We describe the production of two recombinant nonglycosylated human serum transferrins (hTF-NG), containing a factor Xa cleavage site and a hexa-His tag at their carboxyl-terminal ends. One of the constructs comprises the entire coding region for hTF (residues 1-679), while the other lacks the final three carboxyl-terminal amino acids. After insertion of the His-tagged hTFs into the pNUT vector, transfection into baby hamster kidney (BHK) cells, and selection with methotrexate, the secreted recombinant proteins were isolated from the tissue culture medium. Average maximum expression levels of the His-tagged hTFs were about 40 mg/L compared to an average maximum of 50 mg/L for hTF-NG. The first step of purification involved an anion exchange column. The second step utilized a Poros metal chelate column preloaded with copper from which the His-tagged sample was eluted with a linear imidazole gradient. The His-tagged hTFs were characterized and compared to both recombinant hTF-NG and glycosylated hTF from human serum. The identity of each of the His-tagged hTFs constructs was verified by electrospray mass spectroscopy. In summary, the His-tagged hTF constructs simplify the purification of these metal-binding proteins with minimal effects on many of their physical properties. The His-tagged hTFs share many features common to hTF, including reversible iron binding, reactivity with a monoclonal antibody, and presence as a monomer in solution.  相似文献   

7.
A general procedure for the purification of histidine-tagged proteins has been developed using immobilized metal-ion affinity chromatography. This two-step purification method can be used for proteins containing a hexahistidine tag and a thrombin cleavage site, yielding high amounts of purified protein. The advantage of this method is that thrombin is used instead of imidazole in the final purification step. Imidazole can influence NMR experiments, competition studies, or crystallographic trials, and the presence of imidazole often results in protein aggregates. Removal of the His-tag results in a form of the protein of interest in which no additional tags are present, resembling the native form of the protein, with only three additional amino acids at the N-terminal side. Our method is compared with a more conventional method for the purification of the Azotobacter vinelandii NIFL PAS domain, overexpressed in Escherichia coli. It also proves to be successful for three different His-tagged proteins, the Klebsiella pneumoniae NTRC protein, and the A. vinelandii NIFA and NIFL proteins, and therefore it is a general method for the purification of His-tagged proteins.  相似文献   

8.
A 5'-truncated PDE4A-cDNA corresponding to the amino acid positions 200-886 of the "full-length" sequence (Accession No. L20965) was generated from human leukocyte mRNA by RT-PCR. Several PDE4A constructs containing the catalytic region and differing in their degree of N- and/or C-terminal truncation (amino acid positions 200-886, 200-704, 342-886, and 342-704) were expressed in Escherichia coli to investigate the effect of truncations on purification characteristics, long-term stability, and aggregation. All peptides accumulated as inclusion bodies, necessitating refolding prior to purification by dye and metal chelate affinity chromatography. The constructs differed in long-term stability due to variable levels of protease contamination. The position of the His-tag also influenced the purification results. The best results were obtained with the N- and C-truncated form C-terminally His-tagged, appropriate quantities of which were obtained in pure form and was found to be stable against proteolysis at 4 degrees C for at least 6 weeks. The comparison of the molecular mass of the investigated PDE4A constructs obtained by SDS electrophoresis, size-exclusion chromatography, and analytical ultracentrifugation indicated that C-terminal truncated PDE4A forms dimers whereas PDE4A constructs with a complete C-terminus tend to form larger aggregates.  相似文献   

9.
A family of specific cloning vectors was constructed to express in the cyanobacterium Anabaena sp. PCC7120 recombinant C-phycocyanin subunits with one or more different tags, including the 6xHis tag, oligomerization domains, and the streptavidin-binding Strep2 tag. Such tagged alpha or beta subunits of Anabaena sp. PCC7120 C-phycocyanin formed stoichiometric complexes in vivo with appropriate wild-type subunits to give constructs with the appropriate oligomerization state and normal posttranslational modifications and with spectroscopic properties very similar to those of unmodified phycocyanin. All of these constructs were incorporated in vivo into the rod substructures of the light-harvesting complex, the phycobilisome. The C-terminal 114-residue portion of the Anabaena sp. PCC7120 biotin carboxyl carrier protein (BCCP114) was cloned and overexpressed and was biotinylated up to 20% in Escherichia coli and 40% in wild-type Anabaena sp. His-tagged phycocyanin beta--BCCP114 constructs expressed in Anabaena sp. were >30% biotinylated. In such recombinant phycocyanins equipped with stable trimerization domains, >75% of the fusion protein was specifically bound to streptavidin- or avidin-coated beads. Thus, the methods described here achieve in vivo production of stable oligomeric phycobiliprotein constructs equipped with affinity purification tags and biospecific recognition domains usable as fluorescent labels without further chemical manipulation.  相似文献   

10.
A Ca2+ -dependent calmodulin-binding peptide (CBP) is an attractive tag for affinity purification of recombinant proteins, especially membrane proteins, since elution is simply accomplished by removing/chelating Ca2+. To develop a single-step calmodulin/CBP-dependent purification procedure for Escherichia coli nicotinamide nucleotide transhydrogenase, a 49 amino acid large CBP or a larger 149 amino acid C-terminal fragment of human plasma membrane Ca2+ -ATPase (hPMCA) was fused C-terminally to the beta subunit of transhydrogenase. Fusion using the 49 amino acid fragment resulted in a dramatic loss of transhydrogenase expression while fusion with the 149 amino acid fragment gave a satisfactory expression. This chimeric protein was purified by affinity chromatography on calmodulin-Sepharose with mild elution with EDTA. The purity and activity were comparable to those obtained with His-tagged transhydrogenase and showed an increased stability. CBP-tagged transhydrogenase contained a 4- to 10-fold higher amount of the alpha subunit relative to the beta subunit as compared to wild-type transhydrogenase. To determine whether the latter was due to the CBP tag, a double-tagged transhydrogenase with both an N-terminal 6x His-tag and a CBP-tag, purified by using either tag, gave no significant increase in purity as compared to the single-tagged protein. The reasons for the altered subunit composition are discussed. The results suggest that, depending on the construct, the CBP-tag may be a suitable affinity purification tag for membrane proteins in general.  相似文献   

11.
Structural biology places a high demand on proteins both in terms of quality and quantity. Although many protein expression and purification systems have been developed, an efficient and simple system which can be easily adapted is desirable. Here, we report a new system which combines improved expression, solubility screening and purification efficiency. The system is based on two newly constructed vectors, pEHISTEV and pEHISGFPTEV derived from a pET vector. Both vectors generate a construct with an amino-terminal hexahistidine tag (His-tag). In addition, pEHISGFPTEV expresses a protein with an N-terminal His-tagged green fluorescent protein (GFP) fusion to allow rapid quantitation of soluble protein. Both vectors have a tobacco etch virus (TEV) protease cleavage site that allows for production of protein with only two additional N-terminal residues and have the same multiple cloning site which enables parallel cloning. Protein purification is a simple two-stage nickel affinity chromatography based on the His tag removal. A total of seven genes were tested using this system. Expression was optimised using pEHISGFPTEV constructs by monitoring the GFP fluorescence and the soluble target proteins were quantified using spectrophotometric analysis. All the tested proteins were purified with sufficient quantity and quality to attempt structure determination. This system has been proven to be simple and effective for structural biology. The system is easily adapted to include other vectors, tags or fusions and therefore has the potential to be broadly applicable.  相似文献   

12.
High-level recombinant expression of protein kinases in eukaryotic cells or Escherichia coli commonly gives products that are phosphorylated by autocatalysis or by the action of endogenous kinases. Here, we report that phosphorylation occurred on serine residues adjacent to hexahistidine affinity tags (His-tags) derived from several commercial expression vectors and fused to overexpressed kinases. The result was observed with a variety of recombinant kinases expressed in either insect cells or E. coli. Multiple phosphorylations of His-tagged full-length Aurora A, a protein serine/threonine kinase, were detected by mass spectrometry when it was expressed in insect cells in the presence of okadaic acid, a protein phosphatase inhibitor. Peptide mapping by liquid chromatography-mass spectrometry detected phosphorylations on all three serine residues in an N-terminal tag, alpha-N-acetyl-MHHHHHHSSGLPRGS. The same sequence was also phosphorylated, but only at a low level, when a His-tagged protein tyrosine kinase, Pyk2 was expressed in insect cells and activated in vitro. When catalytic domains of Aurora A and several other protein serine/threonine kinases were expressed in E. coli, serines in the affinity tag sequence GSSHHHHHHSSGLVPRGS were also variably phosphorylated. His-Aurora A with hyperphosphorylation of the serine residues in the tag aggregated and resisted thrombin-catalyzed removal of the tag. Treatment with alkaline phosphatase partly restored sensitivity to thrombin. The same His-tag sequence was also detected bearing alpha-N-d-gluconoylation in addition to multiple phosphorylations. The results show that histidine-tag sequences can receive complicated posttranslational modification, and that the hyperphosphorylation and resulting heterogeneity of the recombinant fusion proteins can interfere with downstream applications.  相似文献   

13.
Silkworms are useful bioreactors for heterologous protein expression when used in conjunction with the Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid system. However, purification from silkworm hemolymph is difficult since it contains various kinds of proteins. In this study, we investigated an effective single-step method for the purification of affinity-tagged single-chain antibody variable region fragment (scFv) from silkworm larval hemolymph. A 5-fold higher expression level was obtained when scFv was fused with the His tag than when it was fused with the Strep II or GST tags. However, the His tag was inadequate for single-step purification since it led to the nonspecific binding of contaminants. The purification recoveries of GST-, Strep II-, and His-tagged scFvs were 91.8%, 43.7%, and 27.2%, respectively. The specific amount of single-step purified GST-tagged scFv was 2.2∼2.7 fold higher than the amounts of the His- and Strep II-tagged constructs. The purities of Strep II- and GST-tagged scFvs in the eluent were 98.4% and 83.0%, respectively. Thus, both the short peptide Strep II and GST protein are suitable fusion tags for the affinity purification of proteins from silkworm larvae.  相似文献   

14.
Ahmad N  Michoux F  McCarthy J  Nixon PJ 《Planta》2012,235(4):863-871
Chloroplast transformation offers an exciting platform for the safe, inexpensive and large-scale production of recombinant proteins in plants. An important advantage for the isolation of proteins produced in the chloroplast would be the use of affinity tags for rapid purification by affinity chromatography. To date, only His-tags have been used. In this study, we have tested the feasibility of expressing two additional affinity tags: glutathione-S-transferase (GST) and a His-tagged derivative of the maltose-binding protein (His6-MBP). By using the chloroplast 16S rRNA promoter and 5′ untranslated region of phage T7 gene 10, GST and His6-MBP were expressed in homoplastomic tobacco plants at approximately 7% and 37% of total soluble protein, respectively. GST could be purified by one-step-affinity purification using a glutathione column. Much better recoveries were obtained for His6-MBP by using a twin-affinity purification procedure involving first immobilised nickel followed by binding to amylose. Interestingly, expression of GST led to cytoplasmic male sterility. Overall, our work expands the tools available for purifying recombinant proteins from the chloroplast.  相似文献   

15.
16.
UDP-glucuronosyltransferases (UGTs) catalyze the transfer of glucuronic acid from uridine diphosphate-glucuronic acid (UDP-GA) to compounds with amine, hydroxyl, and carboxylic acid moieties. N-glucuronidation is an important pathway for elimination of many tertiary amine therapeutic agents used in humans. UGT1A4 has been reported to be specific for glucuronidating primary, secondary, and tertiary amines, forming N-glucuronides. To further investigate the drugs metabolized by UGT1A4, the Bac-to-Bac expression system was used to express the recombinant UGT1A4 with His-tag on the C-terminal. The His-tagged recombinant UGT1A4 expressed in Spodoptera frugiperda (Sf9) cells were detected using anti-His antibody and the molecular weight of the recombinant protein was approximately 55kDa. The enzyme activity towards imipramine in cell homogenate protein was found to be 83.14+/-15pmol/min/mg protein (n=3) with 0.5mM imipramine by HPLC, but was not detectable in blank Sf9 cells. It paved the way for the further studies for drug glucuronidation by UGT1A4. The purification of the UGT1A4 can be done by Ni-resin. This is helpful to do research on the structure of the UFT1A4.  相似文献   

17.
The demand for recombinant proteins for medical and industrial use is expanding rapidly and plants are now recognized as an efficient, inexpensive means of production. Although the accumulation of recombinant proteins in transgenic plants can be low, we have previously demonstrated that fusions with an elastin‐like polypeptide (ELP) tag can significantly enhance the production yield of a range of different recombinant proteins in plant leaves. ELPs are biopolymers with a repeating pentapeptide sequence (VGVPG)n that are valuable for bioseparation, acting as thermally responsive tags for the non‐chromatographic purification of recombinant proteins. To determine the optimal ELP size for the accumulation of recombinant proteins and their subsequent purification, various ELP tags were fused to green fluorescent protein, interleukin‐10, erythropoietin and a single chain antibody fragment and then transiently expressed in tobacco leaves. Our results indicated that ELP tags with 30 pentapeptide repeats provided the best compromise between the positive effects of small ELP tags (n = 5–40) on recombinant protein accumulation and the beneficial effects of larger ELP tags (n = 80–160) on recombinant protein recovery during inverse transition cycling (ITC) purification. In addition, the C‐terminal orientation of ELP fusion tags produced higher levels of target proteins, relative to N‐terminal ELP fusions. Importantly, the ELP tags had no adverse effect on the receptor binding affinity of erythropoietin, demonstrating the inert nature of these tags. The use of ELP fusion tags provides an approach for enhancing the production of recombinant proteins in plants, while simultaneously assisting in their purification. Biotechnol. Bioeng. 2009;103: 562–573. © 2009 Wiley Periodicals, Inc.  相似文献   

18.
The detection and purification of proteins are often time-consuming and frequently involve complicated protocols. The addition of a peptide tag to recombinant proteins can make this process more efficient. Many of the commonly used tags, such as Flag™, Myc, HA and V5 are recognized by specific monoclonal antibodies and therefore, allow immunoaffinity-based purification. Enhancing the current scope of flexibility in using diverse peptide tags, we report here the development of a novel, short polypeptide tag (Tab2) for detection and purification of recombinant proteins. The Tab2 epitope corresponds to the NH2-terminal seven amino acid residues of human TGF. A monoclonal anti-Tab2 antibody was raised and characterized. To investigate the potential of this peptide sequence as a novel tag for recombinant proteins, we expressed several different recombinant proteins containing this tag in E. coli, baculovirus, and mammalian cells. The data presented demonstrates the Tab2 tag–anti-Tab2 antibody combination is a reliable tool enabling specific Western blot detection, FACS analysis, and immunoprecipitation as well as non-denaturing protein affinity purification.  相似文献   

19.
人细胞质硫氧还蛋白(hTrx1)在抗氧化和氧化还原调控中起重要作用.如果静脉注射重组hTrx1,动物抗氧化能力将增高.近年来,随着人们对氧化还原调控的关注,hTrx1需求不断增加.为了快速获得高纯度重组hTrx1,N末端亲和标签,如组氨酸标签(His-tag)和谷胱甘肽S-转移酶标签(GST-tag),被用于hTrx1亲和纯化.带N末端标签的hTrx1融合蛋白在实验中用的越来越多.但N末端延长是否会影响hTrx1特性尚不清楚.我们构建与优化了hTrx1原核表达质粒,在大肠杆菌中高效表达了含天然N末端、带His-tag或带GST-tag的3种重组hTrx1.纯化蛋白在SDS-PAGE上呈现1条带,对应的分子量分别为12kD、17kD及38kD.在无氧化剂存在时,它们催化胰岛素还原的能力不分仲伯.当有H2O2存在时,天然N末端hTrx1通过形成可逆二聚体,对H2O2表现出较强的耐受性;而N末端亲和标签有干扰二聚体形成,使hTrx1对H2O2耐受性降低的作用,其中GST-tag干扰作用明显大于His-tag.此外,体内重要的氧化还原对GSH/GSSG,有增进hTrx1及其还原酶催化NADPH氧化的作用,N末端亲和标签可明显扩大GSH/GSSG的这种作用.我们分析了N末端亲和标签对hTrx1活性影响的可能机理.  相似文献   

20.

Background  

In the postgenomic era, high throughput protein expression and protein microarray technologies have progressed markedly permitting screening of therapeutic reagents and discovery of novel protein functions. Hexa-histidine is one of the most commonly used fusion tags for protein expression due to its small size and convenient purification via immobilized metal ion affinity chromatography (IMAC). This purification process has been adapted to the protein microarray format, but the quality of in situ His-tagged protein purification on slides has not been systematically evaluated. We established methods to determine the level of purification of such proteins on metal chelate-modified slide surfaces. Optimized in situ purification of His-tagged recombinant proteins has the potential to become the new gold standard for cost-effective generation of high-quality and high-density protein microarrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号