共查询到20条相似文献,搜索用时 0 毫秒
1.
Iwamoto M Shimizu H Inoue F Konno T Sasaki YC Oiki S 《The Journal of biological chemistry》2006,281(38):28379-28386
KcsA is the first potassium channel for which the molecular structure was revealed. However, the high resolution structural information is limited to the transmembrane domain, and the dynamic picture of the full KcsA channel remains unsolved. We have developed a new approach to investigate the surface structure of proteins, and we applied this method to investigate the full length of the KcsA channel. Single-cysteine substitution was introduced into 25 sites, and specific reaction of these mutated channels to a bare surface of a flat gold plate was evaluated by surface plasmon resonance measurements. The surface plasmon resonance signals revealed the highest exposure for the mutant of the C-terminal end. When the gate of the KcsA channel is kept closed at pH 7.5, the extent of exposure showed periodic patterns for the consecutive sites located in the cytoplasmic (CP) and N-terminal domain. This suggests that these stretches take the alpha-helical structure. When the channel was actively gated at pH 4.0, many sites in the CP domain became exposed. Compared with the rigid structure in pH 7.5, these results indicate that the CP domain became loosely packed upon active gating. The C-terminal end of the M2 helix is a moving part of the gate, and it is exposed to the outer surface slightly at pH 4.0. By adding a channel blocker, tetrabutylammonium, the gate is further exposed. This suggests that in the active gating tetrabutylammonium keeps the gate open rather than being trapped in the central cavity. 相似文献
2.
Molecular dynamics simulations and KcsA channel gating 总被引:2,自引:0,他引:2
The gating mechanism of a bacterial potassium channel, KcsA, has been investigated via multi-nanosecond molecular dynamic simulations of the channel molecules embedded in a fully solvated palmitoyloleoylphosphatidylcholine bilayer. Four events are seen in which a cation (K(+) or, in one case, Na(+)) initially present in the central cavity exits through the intracellular mouth (the presumed gate) of the channel. Whilst in the cavity a cation interacts with the sidechain T107 O gamma atom of one of the subunits prior to its exit from the channel. Secondary structure analysis as a function of time reveals a break in the helicity of one of the M2 helices. This break is expected to lend flexibility to the helices, enabling them to "open" (minimum pore radius >0.13 nm) and "close" (minimum pore radius <0.13 nm) the channel. Fluctuations in the pore radius at the intracellular gate region are of the order of 0.05 nm, with an average radius in the region of the gate of ca. 0.1 nm. However, around the time of exit of a cation, the pore widens to about 0.15 nm. The distances between the C alpha atoms of the inner helices M2 reveal a coupled increase and decrease between the opposite pair of helices at about the time of exit of the ion. This suggests a breathing motion of the M2 helices that may form the basis for a gating mechanism. 相似文献
3.
Molina ML Barrera FN Fernández AM Poveda JA Renart ML Encinar JA Riquelme G González-Ros JM 《The Journal of biological chemistry》2006,281(27):18837-18848
Different patterns of channel activity have been detected by patch clamping excised membrane patches from reconstituted giant liposomes containing purified KcsA, a potassium channel from prokaryotes. The more frequent pattern has a characteristic low channel opening probability and exhibits many other features reported for KcsA reconstituted into planar lipid bilayers, including a moderate voltage dependence, blockade by Na(+), and a strict dependence on acidic pH for channel opening. The predominant gating event in this low channel opening probability pattern corresponds to the positive coupling of two KcsA channels. However, other activity patterns have been detected as well, which are characterized by a high channel opening probability (HOP patterns), positive coupling of mostly five concerted channels, and profound changes in other KcsA features, including a different voltage dependence, channel opening at neutral pH, and lack of Na(+) blockade. The above functional diversity occurs correlatively to the heterogeneous supramolecular assembly of KcsA into clusters. Clustering of KcsA depends on protein concentration and occurs both in detergent solution and more markedly in reconstituted membranes, including giant liposomes, where some of the clusters are large enough (up to micrometer size) to be observed by confocal microscopy. As in the allosteric conformational spread responses observed in receptor clustering (Bray, D. and Duke, T. (2004) Annu. Rev. Biophys. Biomol. Struct. 33, 53-73) our tenet is that physical clustering of KcsA channels is behind the observed multiple coupled gating and diverse functional responses. 相似文献
4.
Global parameter optimization for cardiac potassium channel gating models. 总被引:5,自引:2,他引:5
下载免费PDF全文

Quantitative ion channel model evaluation requires the estimation of voltage dependent rate constants. We have tested whether a unique set of rate constants can be reliably extracted from nonstationary macroscopic voltage clamp potassium current data. For many models, the rate constants derived independently at different membrane potentials are not unique. Therefore, our approach has been to use the exponential voltage dependence predicted from reaction rate theory (Stevens, C. F. 1978. Biophys. J. 22:295-306; Eyring, H., S. H. Lin, and S. M. Lin. 1980. Basic Chemical Kinetics. Wiley and Sons, New York) to couple the rate constants derived at different membrane potentials. This constrained the solution set of rate constants to only those that also obeyed this additional set of equations, which was sufficient to obtain a unique solution. We have tested this approach with data obtained from macroscopic delayed rectifier potassium channel currents in voltage-clamped guinea pig ventricular myocyte membranes. This potassium channel has relatively simple kinetics without an inactivation process and provided a convenient system to determine a globally optimized set of voltage-dependent rate constants for a Markov kinetic model. The ability of the fitting algorithm to extract rate constants from the macroscopic current data was tested using "data" synthesized from known rate constants. The simulated data sets were analyzed with the global fitting procedure and the fitted rate constants were compared with the rate constants used to generate the data. Monte Carlo methods were used to examine the accuracy of the estimated kinetic parameters. This global fitting approach provided a useful and convenient method for reliably extracting Markov rate constants from macroscopic voltage clamp data over a broad range of membrane potentials. The limitations of the method and the dependence on initial guesses are described. 相似文献
5.
Activation gating in KcsA is elicited by changes in intracellular proton concentration. Thompson et al. [1] identified a charge cluster around the inner gate that plays a key role in defining proton activation in KcsA. Here, through functional and spectroscopic approaches, we confirmed the role of this charge cluster and now provide a mechanism of pH-dependent gating. Channel opening is driven by a set of electrostatic interactions that include R117, E120 and E118 at the bottom of TM2 and H25 at the end of TM1. We propose that electrostatic compensation in this charge cluster stabilizes the closed conformation at neutral pH and that its disruption at low pH facilitates the transition to the open conformation by means of helix-helix repulsion. 相似文献
6.
The potassium channel KcsA from Streptomyces lividans has been reconstituted into bilayers of phosphatidylcholines and fluorescence spectroscopy has been used to characterize the response of KcsA to changes in bilayer thickness. The Trp residues in KcsA form two bands, one on each side of the membrane. Trp fluorescence emission spectra and the proportion of the Trp fluorescence intensity quenchable by I(-) hardly vary in the lipid chain length range C10 to C24, suggesting efficient hydrophobic matching between KcsA and the lipid bilayer over this range. Measurements of fluorescence quenching for KcsA reconstituted into mixtures of brominated and nonbrominated phospholipids have been analyzed to give binding constants of lipids for KcsA, relative to that for dioleoylphosphatidylcholine (di(C18:1)PC). Relative lipid binding constants increase by only a factor of three with increasing chain length from C10 to C22 with a decrease from C22 to C24. Strongest binding to di(C22:1)PC corresponds to a state in which the side chains of the lipid-exposed Trp residues are likely to be located within the hydrocarbon core of the lipid bilayer. It is suggested that matching of KcsA to thinner bilayers than di(C24:1)PC is achieved by tilting of the transmembrane alpha-helices in KcsA. Measurements of fluorescence quenching of KcsA in bilayers of brominated phospholipids as a function of phospholipid chain length suggest that in the chain length range C14 to C18 the Trp residues move further away from the center of the lipid bilayer with increasing chain length, which can be partly explained by a decrease in helix tilt angle with increasing bilayer thickness. In the chain length range C18 to C24 it is suggested that the Trp residues become more buried within the hydrocarbon core of the bilayer. 相似文献
7.
The structural, dynamical, and thermodynamic properties of a model potassium channel are studied using molecular dynamics simulations. We use the recently unveiled protein structure for the KcsA potassium channel from Streptomyces lividans. Total and free energy profiles of potassium and sodium ions reveal a considerable preference for the larger potassium ions. The selectivity of the channel arises from its ability to completely solvate the potassium ions, but not the smaller sodium ions. Self-diffusion of water within the narrow selectivity filter is found to be reduced by an order of magnitude from bulk levels, whereas the wider hydrophobic section of the pore maintains near-bulk self-diffusion. Simulations examining multiple ion configurations suggest a two-ion channel. Ion diffusion is found to be reduced to approximately (1)/(3) of bulk diffusion within the selectivity filter. The reduced ion mobility does not hinder the passage of ions, as permeation appears to be driven by Coulomb repulsion within this multiple ion channel. 相似文献
8.
The KcsA channel is a representative potassium channel that is activated by changes in pH. Previous studies suggested that the region that senses pH is entirely within its transmembrane segments. However, we recently revealed that the cytoplasmic domain also has an important role, because its conformation was observed to change dramatically in response to pH changes. Here, to investigate the effects of the cytoplasmic domain on pH-dependent gating, we made a chimera mutant channel consisting of the cytoplasmic domain of the KcsA channel and the transmembrane region of the MthK channel. The chimera showed a pH dependency similar to that of KcsA, indicating that the cytoplasmic domain can act as a pH sensor. To identify how this region detects pH, we substituted certain cytoplasmic domain amino acids that are normally negatively charged at pH 7 for neutral ones in the KcsA channels. These mutants opened independently of pH, suggesting that electrostatic charges have a major role in the cytoplasmic domain's ability to sense and respond to pH. 相似文献
9.
Conducting-state properties of the KcsA potassium channel from molecular and Brownian dynamics simulations. 总被引:6,自引:0,他引:6
The mechanisms underlying transport of ions across the potassium channel are examined using electrostatic calculations and three-dimensional Brownian dynamics simulations. We first build open-state configurations of the channel with molecular dynamics simulations, by pulling the transmembrane helices outward until the channel attains the desired interior radius. To gain insights into ion permeation, we construct potential energy profiles experienced by an ion traversing the channel in the presence of other resident ions. These profiles reveal that in the absence of an applied field the channel accommodates three potassium ions in a stable equilibrium, two in the selectivity filter and one in the central cavity. In the presence of a driving potential, this three-ion state becomes unstable, and ion permeation across the channel is observed. These qualitative explanations are confirmed by the results of three-dimensional Brownian dynamics simulations. We find that the channel conducts when the ionizable residues near the extracellular entrance are fully charged and those near the intracellular side are partially charged. The conductance increases steeply as the radius of the intracellular mouth of the channel is increased from 2 A to 5 A. Our simulation results reproduce several experimental observations, including the current-voltage curves, conductance-concentration relationships, and outward rectification of currents. 相似文献
10.
The thermodynamics of cation permeation through the KcsA K(+) channel selectivity filter is studied from the perspective of a physically transparent semimicroscopic model using Monte Carlo free energy integration. The computational approach chosen permits dissection of the separate contributions to ionic stabilization arising from different parts of the channel (selectivity filter carbonyls, single-file water, cavity water, reaction field of bulk water, inner helices, ionizable residues). All features play important roles; their relative significance varies with the ion's position in the filter. The cavity appears to act as an electrostatic buffer, shielding filter ions from structural changes in the inner pore. The model exhibits K(+) vs. Na(+) selectivity, and roughly isoenergetic profiles for K(+) and Rb(+), and discriminates against Cs(+), all in agreement with experimental data. It also indicates that Ba(2+) and Na(+) compete effectively with permeant ions at a site near the boundary between the filter and the cavity, in the vicinity of the barium blocker site. 相似文献
11.
Wenyu Zhong 《Biochemical and biophysical research communications》2009,388(1):86-90
Potassium channels conduct K+ flow selectively across the membrane through a central pore. During a process called gating, the potassium channels undergo a conformational change that opens or closes the ion-conducting pore. The potassium channel KcsA has been structurally determined in its closed state. However, the dynamic mechanism of the gating transition of the KcsA channel is still being investigated. Here, a targeted molecular dynamics simulation up to 150 ns is performed to investigate the detailed opening process of the KcsA channel with an open Kv1.2 structure serving as the target. The channel arrived at a self-determined quasi-stable state within 60 ns. The rigid-body and hinge-bending modes are observed mixed together in the remaining 90 ns long quasi-stable state. The mixed-mode movement seems come from the competition between the helix rigidity and the biased-applied gating force. 相似文献
12.
Intracellular tetraethylammonium (TEA) inhibition was studied at the single-channel level in the KcsA potassium channel reconstituted in planar lipid bilayers. TEA acts as a fast blocker (resulting in decreased current amplitude) with an affinity in the 75 mM range even at high bandwidth. Studies over a wide voltage range reveal that TEA block has a complex voltage-dependence that also depends on the ionic conditions. These observations are examined in the context of permeation models to extend our understanding of the coupling between permeant ions and TEA blockade. 相似文献
13.
A series of ab initio (density functional) calculations were carried out on side chains of a set of amino acids, plus water, from the (intracellular) gating region of the KcsA K(+) channel. Their atomic coordinates, except hydrogen, are known from X-ray structures [D.A. Doyle, J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, R. MacKinnon, The structure of the potassium channel: molecular basis of K(+) conduction and selectivity, Science 280 (1998) 69-77; R. MacKinnon, S.L. Cohen, A. Kuo, A. Lee, B.T. Chait, Structural conservation in prokaryotic and eukaryotic potassium channels, Science 280 (1998) 106-109; Y. Jiang, A. Lee, J. Chen, M. Cadene, B.T. Chait, R. MacKinnon, The open pore conformation of potassium channels. Nature 417 (2001) 523-526], as are the coordinates of some water oxygen atoms. The 1k4c structure is used for the starting coordinates. Quantum mechanical optimization, in spite of the starting configuration, places the atoms in positions much closer to the 1j95, more tightly closed, configuration. This state shows four water molecules forming a "basket" under the Q119 side chains, blocking the channel. When a hydrated K(+) approaches this "basket", the optimized system shows a strong set of hydrogen bonds with the K(+) at defined positions, preventing further approach of the K(+) to the basket. This optimized structure with hydrated K(+) added shows an ice-like 12 molecule nanocrystal of water. If the water molecules exchange, unless they do it as a group, the channel will remain blocked. The "basket" itself appears to be very stable, although it is possible that the K(+) with its hydrating water molecules may be more mobile, capable of withdrawing from the gate. It is also not surprising that water essentially freezes, or forms a kind of glue, in a nanometer space; this agrees with experimental results on a rather different, but similarly sized (nm dimensions) system [K.B. Jinesh, J.W.M. Frenken, Capillary condensation in atomic scale friction: how water acts like a glue, Phys. Rev. Lett. 96 (2006) 166103/1-4]. It also agrees qualitatively with simulations on channels [A. Anishkin, S. Sukharev, Water dynamics and dewetting transitions in the small mechanosensitive channel MscS, Biophys. J. 86 (2004) 2883-2895; O. Beckstein, M.S.P. Sansom, Liquid-vapor oscillations of water in hydrophobic nanopores, Proc. Natl Acad. Sci. U. S. A. 100 (2003) 7063-7068] and on featureless channel-like systems [J. Lu, M.E. Green, Simulation of water in a pore with charges: application to a gating mechanism for ion channels, Prog. Colloid Polym. Sci. 103 (1997) 121-129], in that it forms a boundary on water that is not obvious from the liquid state. The idea that a structure is stable, even if individual molecules exchange, is well known, for example from the hydration shell of ions. We show that when charges are added in the form of protons to the domains (one proton per domain), the optimized structure is open. No stable water hydrogen bonds hold it together; an opening of 11.0 A appears, measured diagonally between non-neighboring domains as glutamine 119 carbonyl O-O distance. This is comparable to the opening in the MthK potassium channel structure that is generally agreed to be open. The appearance of the opening is in rather good agreement with that found by Perozo and coworkers. In contrast, in the uncharged structure this diagonal distance is 6.5 A, and the water "basket" constricts the uncharged opening still further, with the ice-like structure that couples the K(+) ion to the gating region freezing the entrance to the channel. Comparison with our earlier model for voltage gated channels suggests that a similar mechanism may apply in those channels. 相似文献
14.
Alisher M. Kariev 《生物化学与生物物理学报:生物膜》2007,1768(5):1218-1229
A series of ab initio (density functional) calculations were carried out on side chains of a set of amino acids, plus water, from the (intracellular) gating region of the KcsA K+ channel. Their atomic coordinates, except hydrogen, are known from X-ray structures [D.A. Doyle, J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, R. MacKinnon, The structure of the potassium channel: molecular basis of K+ conduction and selectivity, Science 280 (1998) 69-77; R. MacKinnon, S.L. Cohen, A. Kuo, A. Lee, B.T. Chait, Structural conservation in prokaryotic and eukaryotic potassium channels, Science 280 (1998) 106-109; Y. Jiang, A. Lee, J. Chen, M. Cadene, B.T. Chait, R. MacKinnon, The open pore conformation of potassium channels. Nature 417 (2001) 523-526], as are the coordinates of some water oxygen atoms. The 1k4c structure is used for the starting coordinates. Quantum mechanical optimization, in spite of the starting configuration, places the atoms in positions much closer to the 1j95, more tightly closed, configuration. This state shows four water molecules forming a “basket” under the Q119 side chains, blocking the channel. When a hydrated K+ approaches this “basket”, the optimized system shows a strong set of hydrogen bonds with the K+ at defined positions, preventing further approach of the K+ to the basket. This optimized structure with hydrated K+ added shows an ice-like 12 molecule nanocrystal of water. If the water molecules exchange, unless they do it as a group, the channel will remain blocked. The “basket” itself appears to be very stable, although it is possible that the K+ with its hydrating water molecules may be more mobile, capable of withdrawing from the gate. It is also not surprising that water essentially freezes, or forms a kind of glue, in a nanometer space; this agrees with experimental results on a rather different, but similarly sized (nm dimensions) system [K.B. Jinesh, J.W.M. Frenken, Capillary condensation in atomic scale friction: how water acts like a glue, Phys. Rev. Lett. 96 (2006) 166103/1-4]. It also agrees qualitatively with simulations on channels [A. Anishkin, S. Sukharev, Water dynamics and dewetting transitions in the small mechanosensitive channel MscS, Biophys. J. 86 (2004) 2883-2895; O. Beckstein, M.S.P. Sansom, Liquid-vapor oscillations of water in hydrophobic nanopores, Proc. Natl Acad. Sci. U. S. A. 100 (2003) 7063-7068] and on featureless channel-like systems [J. Lu, M.E. Green, Simulation of water in a pore with charges: application to a gating mechanism for ion channels, Prog. Colloid Polym. Sci. 103 (1997) 121-129], in that it forms a boundary on water that is not obvious from the liquid state. The idea that a structure is stable, even if individual molecules exchange, is well known, for example from the hydration shell of ions. We show that when charges are added in the form of protons to the domains (one proton per domain), the optimized structure is open. No stable water hydrogen bonds hold it together; an opening of 11.0 Å appears, measured diagonally between non-neighboring domains as glutamine 119 carbonyl O-O distance. This is comparable to the opening in the MthK potassium channel structure that is generally agreed to be open. The appearance of the opening is in rather good agreement with that found by Perozo and coworkers. In contrast, in the uncharged structure this diagonal distance is 6.5 Å, and the water “basket” constricts the uncharged opening still further, with the ice-like structure that couples the K+ ion to the gating region freezing the entrance to the channel. Comparison with our earlier model for voltage gated channels suggests that a similar mechanism may apply in those channels. 相似文献
15.
The tetrameric prokaryotic potassium channel KcsA is activated by protons acting on the intracellular aspect of the protein and inactivated through conformational changes in the selectivity filter. Inactivation is modulated by a network of interactions within each protomer between the pore helix and residues at the external entrance of the channel. Inactivation is suppressed by the E71A mutation, which perturbs the stability of this network. Here, cell-free protein synthesis followed by protein purification by sodium dodecyl sulfate–polyacrylamide gel electrophoresis was used to produce heterotetramers of KcsA that contain different combinations of wild-type and E71A subunits. Single-channel recordings from these heterotetramers reveal how the network of interactions in individual protomers affects ionic conduction and channel inactivation, suggesting that the latter is a cooperative process. 相似文献
16.
Single ion channel currents can only provide indirect information on channel molecular events (except for timing). In contrast, the electric displacement currents associated with channel gating, termed gating currents, can provide direct information regarding the channel molecule's conformational changes. However, thus far gating currents have been measured only from ensembles of numerous stochastically activated channels and therefore the information they provide is limited. This work presents, for the first time, measurements of gating currents from a single channel molecule. Averaging close to 8000 pre-open currents, aligned to the single channel opening time, enabled the detection of single channel gating currents with a resolution of 2 electron charges. The measured charge displacements show: 1) a slow component, approximately 2 fA above baseline level, assumed to represent stochastic conformational changes, and 2) transients, the most significant of which occur 1.1 and 0.3 ms before channel opening. The transients most likely represent apparent deterministic stages in the gating process. The largest transient current peak was 5.1 +/- 1.6 fA and the total equivalent charge transported across the membrane was 4.7 +/- 2.5 electron charges. This data is unique also in that it presents monitoring of the behavior of a single, well-defined macromolecule. 相似文献
17.
All K+-channels are stabilized by K+-ions in the selectivity filter. However, they differ from each other with regard to their selectivity filter. In this study, we changed specific residue Val-76 in the selectivity filter of KcsA to its counterpart Ile in inwardly rectifying K+-channels (Kir). The tetramer was exclusively converted into monomers as determined by conventional gel electrophoresis. However, by perfluoro-octanoic acid (PFO) gel electrophoresis mutant channel was mostly detected as tetramer. Tryptophan fluorescence and acrylamide quenching experiments demonstrated significant alteration in channel folding properties via increase in hydrophilicity of local environment. Furthermore, in planar lipid bilayer experiments V76I exhibited drastically lower conductance and decreased channel open time as compared to the unmodified KcsA. These studies suggest that V76I might contribute to determine the stabilizing, folding and channel gating properties in a selective K+-channel. 相似文献
18.
We report results from automated docking and microscopic molecular dynamics simulations of the tetraethylammonium (TEA) complexes with KcsA. Binding modes and energies for TEA binding at the external and internal sides of the channel pore are examined utilising the linear interaction energy method. Effects of the channel ion occupancy (based on our previous results for the ion permeation mechanisms) on the binding energies are considered. Calculations show that TEA forms stable complexes at both the external and internal entrances of the selectivity filter. Furthermore, the effects of the Y82V mutation are evaluated and the results show, in agreement with experimental data, that the mutant has a significantly reduced binding affinity for TEA at the external binding site, which is attributed to stabilising hydrophobic interactions between the ligand and the tyrosines. 相似文献
19.
Three-dimensional Brownian dynamics simulations are used to study conductance of the KcsA potassium channel using the known crystallographic structure. Employing an open-state channel created by molecular dynamics simulations, current-voltage and current-concentration curves broadly consistent with experimental measurements are obtained. In the absence of an applied potential, the channel houses three potassium ions at positions that are in close agreement with X-ray diffraction maps. 相似文献
20.
Renart ML Triano I Poveda JA Encinar JA Fernández AM Ferrer-Montiel AV Gómez J González Ros JM 《Biochemistry》2010,49(44):9480-9487
Binding of K+ and Na+ to the potassium channel KcsA has been characterized from the stabilization observed in the heat-induced denaturation of the protein as the ion concentration is increased. KcsA thermal denaturation is known to include (i) dissociation of the homotetrameric channel into its constituent subunits and (ii) protein unfolding. The ion concentration-dependent changes in the thermal stability of the protein, evaluated as the Tm value for thermal-induced denaturation of the protein, may suggest the existence of both high- and low-affinity K+ binding sites of KcsA, which lend support to the tenet that channel gating may be governed by K+ concentration-dependent transitions between different affinity states of the channel selectivity filter. We also found that Na+ binds to KcsA with a KD similar to that estimated electrophysiologically from channel blockade. Therefore, our findings on ion binding to KcsA partly account for K+ over Na+ selectivity and Na+ blockade and argue against the strict “snug fit” hypothesis used initially to explain ion selectivity from the X-ray channel structure. Furthermore, the remarkable effects of increasing the ion concentration, K+ in particular, on the Tm of the denaturation process evidence that synergistic effects of the metal-mediated intersubunit interactions at the channel selectivity filter are a major contributor to the stability of the tetrameric protein. This observation substantiates the notion of a role for ions as structural “effectors” of ion channels. 相似文献