首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The regulation of creatine kinase (CK) induction during muscle differentiation was analyzed with MM14 mouse myoblasts. These cells withdraw from the cell cycle and commit to terminal differentiation when fed with mitogen-depleted medium. Myoblasts contained trace amounts of an isozyme of brain CK (designated BB-CK), but differentiation was accompanied by the induction of two other isozymes of muscle and brain CKs (designated MM-CK and MB-CK). Increased CK activity was detectable within 6 h of mitogen removal, 3 h after the first cells committed to differentiation and 6 h before fusion began. By 48 h, MM-CK activity increased more than 400-fold, MB-CK activity increased more than 150-fold, and BB-CK activity increased more than 10-fold. Antibodies prepared against purified mouse MM-CK cross-reacted with muscle and brain CKs (designated M-CK and B-CK, respectively) from a variety of species and were used to demonstrate that the increase in enzymatic activity was paralleled by an increase in the protein itself. CK antibodies were also used to aid in identifying cDNA clones to M-CK. cDNA sequences which corresponded to protein-coding regions cross-hybridized with B-CK mRNA; however, a subclone containing the 3'-nontranslated region was unique and was used to quantitate M-CK mRNA levels during myoblast differentiation. M-CK mRNA was not detectable in myoblasts, but within 5 to 6 h of mitogen withdrawal (6 to 7 h before fusion begins) it accumulated to about 30 molecules per cell. By 24 h, myotubes contained approximately 1,100 molecules per nucleus of M-CK mRNA.  相似文献   

2.
The rates of degradation of creatine kinase subunits, M-CK and B-CK subunits, were measured in cultured myogenic cells and in subcultured fibroblasts. In differentiated myogenic cells, the myotubes, both M-CK and B-CK subunits are synthesized. Their rates of degradation were compared. The M-CK subunits is slightly more stable and is degraded with an average apparent half-life of 75 h, whereas that of the B-CK subunit was shorter with 63 h. The turnover properties of M-CK subunit from soluble and of myofibril-bound MM-CK homodimeric creatine kinase isoenzyme isolated from breast muscle of young chickens were identical. The apparent half-life of the B-CK subunit was also determined in subcultured fibroblasts and 5-bromo-2'-deoxyuridine-treated cells, and found to be shorter than in myotubes (46 h and 37 h respectively). Similar observations were made for myosin heavy chain, actin and total acid-precipitable material. It appears therefore that proteins are in general degraded more slowly in differentiated myogenic cells. The differences in the stability of M-CK and B-CK subunits in myotubes probably do not reflect a major regulatory mechanism of the creatine kinase isoenzyme transition.  相似文献   

3.
Creatine kinase (CK) is located in an isoenzyme-specific manner at subcellular sites of energy production and consumption. In muscle cells, the muscle-type CK isoform (MM-CK) specifically interacts with the sarcomeric M-line, while the highly homologous brain-type CK isoform (BB-CK) does not share this property. Sequence comparison revealed two pairs of lysine residues that are highly conserved in M-CK but are not present in B-CK. The role of these lysines in mediating M-line interaction was tested with a set of M-CK and B-CK point mutants and chimeras. We found that all four lysine residues are involved in the isoenzyme-specific M-line interaction, acting pair-wise as strong (K104/K115) and weak interaction sites (K8/K24). An exchange of these lysines in MM-CK led to a loss of M-line binding, whereas the introduction of the very same lysines into BB-CK led to a gain of function by transforming BB-CK into a fully competent M-line-binding protein. The role of the four lysines in MM-CK is discussed within the context of the recently solved x-ray structures of MM-CK and BB-CK.  相似文献   

4.
Pectoral muscles from chicken embryos of various ages were examined with immunofluorescent and radiolabeled probes for the presence of brain-type creatine kinase (B-CK), muscle-specific creatine kinase (M-CK), muscle-specific myosin heavy chain (MHC), and cycling cells. The diffusible creatine kinase isozymes were not detectable by indirect immunofluorescence after standard histological fixation of embryonic muscle. However, a fixation procedure was devised that permitted immunodetection of the creatine kinase isozymes (particularly B-CK) in embryonic tissue from all stages of development studied. B-CK, M-CK, and MHC were all detected in post-mitotic muscle cells, but only B-CK was detected in cycling cells. Correlations between these findings and in vitro observations of a deterministic muscle lineage are discussed.  相似文献   

5.
To study the physiological role of the creatine kinase/phosphocreatine (CK/PCr) system in cells and tissues with a high and fluctuating energy demand we have concentrated on the site-directed inactivation of the B- and M-CK genes encoding the cytosolic CK protein subunits. In our approach we used homologous recombination in mouse embryonic stem (ES) cells from strain 129/Sv. Using targeting constructs based on strain 129/Sv isogenic DNA we managed to ablate the essential exons of the B-CK and M-CK genes at reasonably high frequencies. ES clones with fully disrupted B-CK and two types of M-CK gene mutations, a null (M-CK) and leaky (M-CK1) mutation, were used to generate chimaeric mutant mice via injection in strain C57BL/6 derived blastocysts. Chimaeras with the B-CK null mutation have no overt abnormalities but failed to transmit the mutation to their offspring. For the M-CK and M-CK1 mutations successful transmission was achieved and heterozygous and homozygous mutant mice were bred. Animals deficient in MM-CK are phenotypically normal but lack muscular burst activity. Fluxes through the CK reaction in skeletal muscle are highly impaired and fast fibres show adaptation in cellular architecture and storage of glycogen. Mice homozygous for the leaky M-CK allele, which have 3-fold reduced MM-CK activity, show normal fast fibres but CK fluxes and burst activity are still not restored to wildtype levels.  相似文献   

6.
To better understand the relationship between the Mr 165,000 M-line protein (M-protein) and H-zone structure in skeletal and in cardiac muscle, as well as the possible interaction of M-protein with another skeletal muscle M-line component, the homodimeric creatine kinase isoenzyme composed of two M subunits (MM-CK), we performed biochemical, immunological, and ultrastructural studies on myofibrils extracted by different procedures. In contrast to MM-CK, M-protein could not be completely removed from myofibrils by low ionic strength extraction. Fab-fragments of antibodies against M-protein could not release M- protein quantitatively from either breast or heart myofibrils but remained bound to the myofibrillar structure, whereas monovalent antibodies against MM-CK cause the specific release of MM-CK and the concomitant disappearance of the M-line from chicken skeletal muscle myofibrils. When MM-CK was removed from skeletal myofibrils by low ionic strength extraction or, more specifically, by incubation with anti-MM-CK Fab, M-protein was still not released quantitatively upon treatment with anti-M-protein Fab as judged from immunofluorescence data. In the ultrastructural investigation of low ionic strength extracted muscle fibers, M protein could be localized in two stripes on both sides of the former M-line, suggesting a reduced attachment to the residual H-zone structure, whereas the specific removal of MM-CK resulted in the same dense staining pattern for M-protein within the M- line as observed in untreated fibers. However, the binding of M-protein to the residual M-line structure seemed to be reduced, as a considerable amount of this protein could be identified in the supernate of sequentially incubated myofibrils. The results indicate a strong binding of M-protein within the H-zone structure of skeletal as well as heart myofibrils.  相似文献   

7.
8.
BB creatine kinase and myogenic differentiation   总被引:1,自引:0,他引:1  
Abstract. Antisera specific for the B monomer of creatine kinase (B-CK), the M monomer of creatine kinase (M-CK), and muscle-specific myosin heavy chain (MHC) were used to investigate the biochemical characteristics of individual cells in primary myogenic cultures. Through the use of immunocytochemical techniques, in conjunction with 3H-thy-midine autoradiography, it was determined that (1) all of the terminally differentiated myoblasts contained B-CK in addition to M-CK and MHC, (2) none of the cycling cells contained M-CK or MHC, (3) a fraction (7.5%) of the cycling cells contained B-CK, and (4) the cycling, B-CK positive cells divided once, and only once, and produced two terminally differentiated myoblasts. These results indicate that myogenic precursors in vitro are a phenotypically heterogeneous cell population and that the appearance of B-CK in cycling myogenic cells is a biochemical manifestation of a distinct precursor compartment in the chicken skeletal myogenic lineage.  相似文献   

9.
10.
Chicken heart muscle contains almost exclusively the BB isoenzyme of creatine kinase (CK), its myofibrils, moreover, lack an M-line. This tissue thus provides an interesting contrast to skeletal muscle, in which some of the MM-CK present as predominant CK isoenzyme is bound at the myofibrillar M-line. Approx. 2% of the total CK activity in a chicken heart homogenate remains bound to the myofibrillar fraction after repeated washing cycles; both the fraction and the absolute amount of CK bound are about threefold lower than in skeletal muscle. Almost all of the bound enzyme is located within the Z-line region of each sarcomere, as revealed by indirect fluorescent-antibody staining with antiserum against purified chicken BB-CK. After incubation with exogenous purified MM-CK, positive immunofluorescent staining for M- type CK at the H-region of heart myofibrils was observed, along with weaker fluorescence in the Z-line region. Chicken heart myofibrils may thus possess binding sites for both M and B forms of CK.  相似文献   

11.
Muscle-type creatine kinase (MM-CK) is a member of the CK isoenzyme family with key functions in cellular energetics. MM-CK interacts in an isoform-specific manner with the M-band of sarcomeric muscle, where it serves as an efficient intramyofibrillar ATP-regenerating system for the actin-activated myosin ATPase located nearby on both sides of the M-band. Four MM-CK-specific and highly conserved lysine residues are thought to be responsible for the interaction of MM-CK with the M-band. A yeast two-hybrid screen led to the identification of MM-CK as a binding partner of a central portion of myomesin (My7-8). An interaction was observed with domains six to eight of the closely related M-protein but not with several other Ig-like domains, including an M-band domain, of titin. The observed interactions were corroborated and characterised in detail by surface plasmon resonance spectroscopy (BiaCore). In both cases, they were CK isoform-specific and the MM-CK-specific lysine residues (K8. K24, K104 and K115) are involved in this interaction. At pH 6.8, the dissociation constants for the myomesin/MM-CK and the M-protein/MM-CK binding were in the range of 50-100 nM and around 1 microM, respectively. The binding showed pronounced pH-dependence and indicates a dynamic association/dissociation behaviour, which most likely depends on the energy state of the muscle. Our data propose a simple model for the regulation of this dynamic interaction.  相似文献   

12.
Cytosolic creatine kinase isoenzymes MM, MB, and BB are assembled from M or B subunits which occur in different relative amounts in specific tissues. The accumulation of mRNAs encoding the M and B subunits was measured during myogenesis in culture. The relative concentration of the two mRNAs was determined by hybridization with a M-CK cDNA probe isolated previously and a B-CK cDNA probe, the cloning and characterization of which is reported here. The B-CK cDNA hybridizes specifically to a 1.6-kb mRNA found in brain and gizzard but not in adult skeletal muscle tissue. The M-CK cDNA hybridizes to a smaller mRNA 1.4-kb long which is specific to skeletal muscle. In culture, the B-CK mRNA is transiently induced and then declines to a low but detectable level.  相似文献   

13.
Antibodies specific for the novel 86 kd protein purified from chicken pectoralis myofibrils stained by indirect immunofluorescence the middle third of each half A-band of isolated myofibrils and myotubes. Pectoralis muscle 86 kd protein, like pectoralis C-protein, displayed a fibre-type specific distribution by being restricted to fast twitch fibres and absent in slow tonic and heart muscle fibres. This was demonstrated by immunoblotting experiments with tissue extracts and by immunofluorescence labelling of cryosections. In primary cell cultures prepared from embryonic chicken breast muscle, 86 kd protein, C-protein and myomesin were all detected in post-mitotic myoblasts where fluorescence was found in a cross-striated pattern along strands of nascent myofibrils. Fluorescence due to the 86 kd protein was restricted to myofibrils within myotubes and no significant labelling of the sarcoplasm was evident. Glycerinated fast twitch muscle fibres, after incubation with antibodies to 86 kd protein, revealed in each half of the A-band nine distinctly labelled stripes, spaced about 43 nm apart. Simultaneous incubation of fibres with antibodies against 86 kd protein and C-protein showed a co-localization of the seven C-protein stripes (stripes 5 to 11), with seven stripes of 86 kd protein. The two additional stripes (stripes 3 and 4) labelled by anti-86 kd antibody continued towards the M-band at the same periodicity from the last C-protein stripe (stripe 5). Thus, partial co-localization of two different thick filament proteins is demonstrated and the identity of transverse stripes at positions 3 and 4 attributed in part to the presence of the new 86 kd protein.  相似文献   

14.
Most vertebrates possess two genes for cytoplasmic creatine kinase (CK) coding for muscle (M-CK) and brain (B-CK) isoforms which assemble into homo-dimeric (MM, BB) and hetero-dimeric (MB) active enzymes. In mammals and birds, a significant fraction of MM-CK is bound to the myofibrillar M-line where it is thought to facilitate energy buffering and transport. Myofibrillar binding is mediated by major and minor lysine charge clamp motifs (K104/K115 [major] and K8/K24 [minor] in chicken M-CK) located in the N-terminal region [J. Cell Biol. 149 (2000) 1225]. We have obtained the cDNA and deduced amino acid sequences for cytoplasmic CKs from two hagfish, Myxine glutinosa and Eptatretus stoutii, non-vertebrate craniates, and the sequences for two cytoplasmic CKs from the lamprey Lampetra japonica, a jawless true vertebrate. All four cDNAs code for CKs consisting of approximately 380 residues. Phylogenetic analyses showed that the hagfish and lamprey CKs are coded for by genes which are clearly muscle type (M) creatine kinases. Two of these four M-CKs have the K104/K115-equivalent residues of the major myofibrillar binding region while the other two have the K115 equivalent but lack the corresponding K104 residue. All four M-CKs lack the K8/K24 equivalent elements of the minor myofibrillar binding region. Comparison of these sequences to corresponding sequences of cytoplasmic CKs from two protochordates (tunicate, amphioxus) and M- and B-CKs from true fish and above reveal a pattern of acquisition (and loss) of key lysine residues consistent with the physiological context in which these enzymes operate.  相似文献   

15.
We are using the isoenzymes of creatine kinase (CK) to investigate the effect of specific proteolytic modification on the abilities of enzyme subunits to establish precise subunit-subunit recognition in vitro. Previous work by others has shown that treatment of the MM isoenzyme of rabbit CK with Proteinase K results in a specific proteolytic modification and inactivation of the enzyme. In the present work, we show that both the MM and BB isoenzymes of chicken CK are also specifically modified by Proteinase K, resulting in over 98% loss of catalytic activity and approx. 10% decreases in subunit molecular masses of the enzymes. Similar reactions appear to occur when the isoenzymes are treated with Pronase E. Limited amino acid sequence analysis of intact and Proteinase K-modified MM-CK suggests that the proteolytic modification results from a single peptide-bond cleavage occurring between alanine residues 328 and 329, about 50 amino acid residues from the C-terminal end; the active-site cysteine residue was recovered in the large protein fragment of modified M-CK subunits. Proteolytically modified M-CK and B-CK subunits were able to refold and reassociate into dimeric structures after treatment with high concentrations of LiCl and at low pH. Thus the proteolytically modified CK subunits retain their ability to refold and to establish precise subunit-subunit recognition in vitro.  相似文献   

16.
Liu Z  Kim S  Kucuktas H  Karsi A 《Gene》2001,275(2):207-215
In vertebrates, the creatine kinase (CK) family consists of two cytosolic and two mitochondrial isoforms. The two cytosolic isoforms are the muscle type (M-CK) and the brain type (B-CK). Here we report multiple CK isoenzymes in the diploid channel catfish (Ictalurus punctatus) with one unusual cathodic isoform that was previously found only in pathological situations in human. The cathodic CK isoform existed only in the channel catfish stomach, ovary, and spleen, but not in any other species analyzed such as tilapia, smallmouth bass, chicken, or rat. Two genes encode the multiple forms of the channel catfish M-CK cDNAs. M-CK1 has three alleles, M-CK1.1, M-CK1.2, and M-CK1.3, while M-CK2 has just one allele as determined by analysis of 17 cDNA clones and by allele-specific PCR. M-CK1 encodes a protein of 381 amino acids and the M-CK2 cDNA encodes a protein of 380 amino acids. The two cDNAs shared an 86% identity and both have the nine diagnostic boxes for cytosolic CKs and thus are of cytosolic origin. The M-CK1 gene was isolated, sequenced, and characterized and its promoter should be useful for transgenic research for muscle-specific expression.  相似文献   

17.
Purified, repeatedly washed, skeletal muscle myofibrils contain approx. 0.2 U of creatine kinase (CK) activity (equivalent to 2.5 micrograms CK) per milligram dry weight; this firmly bound CK activity is estimated to represent 3-5% of the total cellular CK. It had been shown previously that the myofibrillar CK, which can be quantitatively extracted at low ionic strength and purified to homogeneity, is very similar, if not identical, to the bulk MM-CK. It is shown that the two protein preparations also have the same peptide pattern after cyanogen bromide fractionation and very similar specific activities, confirming their identity. The earlier demonstration that the bound CK is specifically located at the M-lines of isolated myofibrils has been confirmed by immunofluorescence. Antibodies directed against purified MM- and BB-CK were used in the indirect fluorescent antibody technique to study the specificity of myofibril binding sites for different forms of CK. With myofibrils from adult muscle, which has only MM-CK, as well as from early developmental stages in which BB-CK is the predominant isoenzyme, M-type CK was localized exclusively at the M-line, while greater or lesser amounts of B-type CK were found at the Z-line. The data provide strong evidence that the MM-CK at the M-lines in skeletal myofibrils is not adventitiously bound but is rather an integral element in the M-line structure. The amount of CK bound is reasonably consistent with the earlier proposal that the CK molecules might be the transverse M-bridges and appears to be sufficient to regenerate all of the ATP hydrolyzed during muscle contraction.  相似文献   

18.
Cryo-ultramicrotomy and "conventional" plastic sectioning have been used in combination with extraction and immunolabeling techniques to determine the location of the two M-band proteins characterized to date, MM-creatine kinase (MM-CK: Mr, 80,000) and M-protein "myomesin" (Mr, 165,000) within the M-region of chicken pectoralis muscle. The following main results were obtained. (1) The M-band in chicken pectoralis muscle contains five major striations (M1, M4 and M4', M6 and M6' in the terminology of Sj?str?m & Squire, 1977a). (2) Extraction of the bulk of the electron-dense M-band with low ionic strength removes the M-striations M1, M4 and M4' while M6 and M6' are retained. Cross-sections through the M-region of such muscles lack primary M-bridges connecting the thick myosin filaments. (3) Labeling with antibodies against MM-CK enhances the M-striations M4 and M4'; sometimes the whole region between M4 and M4' is labeled. (4) Incubation with antibodies against myomesin results in the labeling of the whole M-band from M6 to M6'; no label is found in the rest of the bare zone outside M6 and M6'. (5) Incubation of low ionic strength extracted muscle fibers with antibodies against myomesin leads to an "incomplete" labeling of the M-band between M6 and M6'; lines M6 and M6' are sometimes seen to be enhanced presumably due to antibody labeling. From these results it is concluded that MM-CK is the major protein of the M4 and M4' (and possibly also of the M1) M-bridges. Myomesin is bound within the M-band along the thick filaments from M6 to M6'. Two hypothetical models for the possible location of myomesin are discussed. According to these models myomesin would either make up the M-filaments or be directly attached to and along the central bare zone of thick myosin filaments.  相似文献   

19.
Myomesin is a 185-kDa protein located in the M-band of striated muscle where it interacts with myosin and titin, possibly connecting thick filaments with the third filament system. By using expression of epitope-tagged myomesin fragments in cultured cardiomyocytes and biochemical binding assays, we could demonstrate that the M-band targeting activity and the myosin-binding site are located in different domains of the molecule. An N-terminal immunoglobulin-like domain is sufficient for targeting to the M-band, but solid-phase overlay assays between individual N-terminal domains and the thick filament protein myosin revealed that the unique head domain contains the myosin-binding site. When expressed in cardiomyocytes, the head domains of rat and chicken myomesin showed species-specific differences in their incorporation pattern. The head domain of rat myomesin localized to a central area within the A-band, whereas the head domain of chicken myomesin was diffusely distributed in the cytoplasm. We therefore conclude that the head domain of myomesin binds to myosin but that this affinity is not sufficient for the restriction of the domain to the M-band in vivo. Instead, the neighboring immunoglobulin-like domain is essential for the precise incorporation of myomesin into the M-band, possibly because of interaction with a yet unknown protein of the sarcomere.  相似文献   

20.
Murine monoclonal antibodies specific for titin have been elicited using a chicken heart muscle residue as antigen. The three antibodies T1, T3, and T4 recognize both bands of the titin doublet in immunoblot analysis on polypeptides from chicken breast muscle. In contrast, on chicken cardiac myofibrils two of the antibodies (T1, T4) react only with the upper band of the doublet indicating immunological differences between heart and skeletal muscle titin. This difference is even more pronounced for rat and mouse. Although all three antibodies react with skeletal muscle titin, T1 and T4 did not detect heart titin, whereas T3 reacts with this titin both in immunofluorescence microscopy and in immunoblots. Immunofluorescence microscopy of myofibrils and frozen tissues from a variety of vertebrates extends these results and shows that the three antibodies recognize different epitopes. All three titin antibodies decorate at the A-I junction of the myofibrils freshly prepared from chicken skeletal muscle and immunoelectron microscopy using native myosin filaments demonstrates that titin is present at the ends of the thick filaments. In chicken heart, however, antibodies T1 and T4 stain within the I-band rather than at the A-I junction. The three antibodies did not react with any of the nonmuscle tissues or permanent cell lines tested and do not decorate smooth muscle. In primary cultures of embryonic chicken skeletal muscle cells titin first appears as longitudinal striations in mononucleated myoblasts and later at the myofibrillar A-I junction of the myotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号