首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Sexual and asexual forms of plants and animals often coexist in the same population. In such cases, the assessment of genotypic identity among individuals is vital for valid biological interpretation of population and evolutionary processes. Several methods are used for identifying clones based on genetical marker data. The only method that detects which multilocus genotypes are likely to be clones has limitations in statistical power. We present a program (mlg sim) that, using a simulation approach, calculates significance values for the likelihood that a multilocus genotype observed more than once in a population is the result of sexual reproduction.  相似文献   

2.
Marchantia inflexa, a dioecious thallose liverwort, is sexually dimorphic in clonal expansion traits. We used selection analyses to measure the magnitude and direction of selection on clonal fitness to uncover possible mechanisms for the maintenance of preadult sexually dimorphic characters. We planted replicates of genotypes of female and male M. inflexa in two light environments in a greenhouse and measured morphological and phenological characters associated with growth and asexual reproduction. Timing to onset of asexual reproduction and plant size early in development were under sex-specific selection in a low light environment. Additionally, females exhibited a sex-specific cost of plasticity in the timing of their onset of asexual reproduction in high light. Selection on asexual fitness tended to shift traits toward monomorphism rather than sexual dimorphism, whereas the expressed phenotype of females was congruent with patterns of selection acting on sexual fitness. We detected negative trade-offs between asexual and sexual fitness components in females in one light environment. Opposing selective forces acting on asexual and sexual fitness components may explain how sexual dimorphisms persist in the face of selection for monomorphism in the preadult phase.  相似文献   

3.
Gregorius HR 《Heredity》2005,94(2):173-179
The conceptual basis for testing clonal propagation is reconsidered with the result that two steps need to be distinguished clearly: (1) specification of the characteristics of multilocus genotype frequencies that result from sexual reproduction together with the kinds of deviations from these characteristics that are produced by clonal propagation, and (2) a statistical method for detecting these deviations in random samples. It is pointed out that a meaningful characterization of sexual reproduction reflects the association of genes in (multilocus) genotypes within the bounds set by the underlying gene frequencies. An appropriate measure of relative gene association is developed which is equivalent to a multilocus generalization of the standardized gametic disequilibrium (linkage disequilibrium). Its application to the characterization of sexually produced multilocus genotypes is demonstrated. The resulting hypothesis on the frequency of a sexually produced genotype is tested with the help of the (significance) probability of obtaining at least two copies of the genotype in question in a random sample of a given size. If at least two copies of the genotype are observed in a sample, and if the probability is significant, then the hypothesis of sexual reproduction is rejected in favor of the assumption that all copies of the genotype belong to the same clone. Common testing approaches rest on the hypothesis of completely independent association of genes in genotypes and on the (significance) probability of obtaining at least as many copies of a genotype as observed in a sample. The validity of these approaches is discussed in relation to the above considerations and recommendations are set out for conducting appropriate tests.  相似文献   

4.
Propagation, whether sexual or asexual, is a fundamental step in the life cycle of every organism. In lichenized fungi, a great variety of vegetative propagules have evolved in order for the symbiotic partners to disperse simultaneously. For lichens with the ability of sexual and asexual reproduction, the relative contribution of vegetative dispersal is unknown but could, nonetheless, be inferred by studying genotype distribution. The genetic structure of three Lobaria pulmonaria (Lobariaceae) populations from Switzerland was investigated based on the observed variation at six microsatellite loci. All three populations had a clustered distribution of identical genotypes at small spatial scales. The maximum distance between identical genotypes was 230 m. At a distance of 350 m from a source tree, seemingly suitable habitat patches were too far apart to be colonized. Some multilocus genotypes were frequent within local populations but no genotypes were shared among populations. The restricted occurrences of common genotypes as well as the clustered distributions are evidence for a limited dispersal of vegetative propagules in L. pulmonaria. Gene flow among isolated populations will ultimately depend on the capacity of long-distance dispersal and thus probably depend on sexual reproduction.  相似文献   

5.
We present a model for the maintenance of sexual reproduction based on the availability of resources, which is the strongest factor determining the growth of populations. The model compares completely asexual species to species that switch between asexual and sexual reproduction (sexual species). Key features of the model are that sexual reproduction sets in when resources become scarce, and that at a given place only a few genotypes can be present at the same time. We show that under a wide range of conditions the sexual species outcompete the asexual ones. The asexual species win only when survival conditions are harsh and death rates are high, or when resources are so little structured or consumer genotypes are so manifold that all resources are exploited to the same extent. These conditions largely represent the conditions in which sexuals predominate over asexuals in the field.  相似文献   

6.
Asexual reproduction could offer up to a two‐fold fitness advantage over sexual reproduction, yet higher organisms usually reproduce sexually. Even in facultatively parthenogenetic species, where both sexual and asexual reproduction is sometimes possible, asexual reproduction is rare. Thus, the debate over the evolution of sex has focused on ecological and mutation‐elimination advantages of sex. An alternative explanation for the predominance of sex is that it is difficult for an organism to accomplish asexual reproduction once sexual reproduction has evolved. Difficulty in returning to asexuality could reflect developmental or genetic constraints. Here, we investigate the role of genetic factors in limiting asexual reproduction in Nauphoeta cinerea, an African cockroach with facultative parthenogenesis that nearly always reproduces sexually. We show that when N. cinerea females do reproduce asexually, offspring are genetically identical to their mothers. However, asexual reproduction is limited to a nonrandom subset of the genotypes in the population. Only females that have a high level of heterozygosity are capable of parthenogenetic reproduction and there is a strong familial influence on the ability to reproduce parthenogenetically. Although the mechanism by which genetic variation facilitates asexual reproduction is unknown, we suggest that heterosis may facilitate the switch from producing haploid meiotic eggs to diploid, essentially mitotic, eggs.  相似文献   

7.
Asexual reproduction in vertebrates is rare and generally considered an evolutionary dead end. Asexuality is often associated with polyploidy, and several hypotheses have been put forward to explain this relationship. So far, it remains unclear whether polyploidization in asexual organisms is a frequent or a rare event. Here we present a field study on the gynogenetic Amazon molly, Poecilia formosa. We used multilocus fingerprints and microsatellites to investigate the genetic diversity in 339 diploid and 55 triploid individuals and in 25 P. mexicana, its sexual host. Although multilocus DNA fingerprints found high clonal diversity in triploids, microsatellites revealed only two very similar clones in the triploids. Phylogenetic analysis of microsatellite data provided evidence for a monophyletic origin of the triploid clones of P. formosa. In addition, shared alleles within the triploid clones between the triploid and diploid genotypes and between asexual and sexual lineages indicate a recent origin of triploid clones in Poecilia formosa.  相似文献   

8.
The adaptive value of sexual reproduction is still debated in evolutionary theory. It has been proposed that the advantage of sexual reproduction over asexual reproduction is to promote genetic diversity, to prevent the accumulation of harmful mutations or to preserve heterozygosity. Since these hypothetical advantages depend on the type of asexual reproduction, understanding how selection affects the taxonomic distribution of each type could help us discriminate between existing hypotheses. Here, I argue that soft selection, competition among embryos or offspring in selection arenas prior to the hard selection of the adult phase, reduces loss of heterozygosity in certain types of asexual reproduction. Since loss of heterozygosity leads to the unmasking of recessive deleterious mutations in the progeny of asexual individuals, soft selection facilitates the evolution of these types of asexual reproduction. Using a population genetics model, I calculate how loss of heterozygosity affects fitness for different types of apomixis and automixis, and I show that soft selection significantly reduces loss of heterozygosity, hence increases fitness, in apomixis with suppression of the first meiotic division and in automixis with central fusion, the most common types of asexual reproduction. Therefore, if sexual reproduction evolved to preserve heterozygosity, soft selection should be associated with these types of asexual reproduction. I discuss the evidence for this prediction and how this and other observations on the distribution of different types of asexual reproduction in nature is consistent with the heterozygosity hypothesis.  相似文献   

9.
Asexual organisms that naturally coexist with sexual relatives may hold the key to understanding the maintenance of sex and recombination, a long-standing problem in evolutionary biology. This situation applies to the peach-potato aphid, Myzus persicae, in southeastern Australia where cyclical parthenogens form mixed populations with obligate parthenogens. We collected M. persicae from several areas across Victoria, genotyped them at seven microsatellite loci and experimentally determined their reproductive mode. The geographic distribution of reproductive modes was correlated with two environmental variables that differentially affect obligate and cyclical parthenogens; obligate parthenogens were less frequent in areas with cold winters because they cannot produce frost-resistant eggs while cyclical parthenogens were limited by the availability of their primary host, peach, on which sexual reproduction takes place. Clonal diversity increased with the proportion of cyclical parthenogens in a sample because they tended to have unique microsatellite genotypes, whereas many obligate parthenogens were copies of the same genotype. Two obligately asexual genotypes stood out as being very abundant and widespread, one constituting 24% and the other 17.4% of the entire collection. Both of these highly successful genotypes were present in the majority of all collection sites. Genetic population structure was weak, albeit significant, with a multilocus FST of only 0.021 when samples were reduced to only one representative of each genotype. Interestingly, obligate parthenogens were, on average, more heterozygous and exhibited larger allele size differences between the two alleles at individual loci than cyclical parthenogens. This striking pattern could result from hybridization, for which we have no evidence, or may reflect the previously proposed model of biased mutational divergence of microsatellite alleles within asexual aphid lineages.  相似文献   

10.
The typical life cycle of an aphid is cyclical parthenogenesis which involves the alternation of sexual and asexual reproduction. However, aphid life cycles, even within a species, can encompass everything on a continuum from obligate sexuality, through facultative sexuality to obligate asexuality. Loss of the sexual cycle in aphids is frequently associated with the introduction of a new pest and can occur for a number of environmental and genetic reasons. Here we investigate loss of sexual function in Sitobion aphids in Australia. Specifically, we aimed to determine whether an absence of sexual reproduction in Australian Sitobion results from genetic loss of sexual function or environmental constraints in the introduced range. We addressed our aims by performing a series of breeding experiments. We found that some lineages have genetically lost sexual function while others retain sexual function and appear environmentally constrained to asexuality. Further, in our crosses, using autosomal and X-linked microsatellite markers, we identified processes deviating from normal Mendelian segregation. We observed strong deviations in X chromosome transmission through the sexual cycle. Additionally, when progeny genotypes were examined across multiple loci simultaneously we found that some multilocus genotypes are significantly over-represented in the sample and that levels of heterozygosity were much higher than expected at almost all loci. This study demonstrates that strong biases in the transmission of X chromosomes through the sexual cycle are likely to be widespread in aphids. The mechanisms underlying these patterns are not clear. We discuss several possible alternatives, including mutation accumulation during periods of functional asexuality and genetic imprinting.  相似文献   

11.

Background and Aims

Expected life history trade-offs associated with sex differences in reproductive investment are often undetected in seed plants, with the difficulty arising from logistical issues of conducting controlled experiments. By controlling genotype, age and resource status of individuals, a bryophyte was assessed for sex-specific and location-specific patterns of vegetative, asexual and sexual growth/reproduction across a regional scale.

Methods

Twelve genotypes (six male, six female) of the dioecious bryophyte Bryum argenteum were subcultured to remove environmental effects, regenerated asexually to replicate each genotype 16 times, and grown over a period of 92 d. Plants were assessed for growth rates, asexual and sexual reproductive traits, and allocation to above- and below-ground regenerative biomass.

Key Results

The degree of sexual versus asexual reproductive investment appears to be under genetic control, with three distinct ecotypes found in this study. Protonemal growth rate was positively correlated with asexual reproduction and sexual reproduction, whereas asexual reproduction was negatively correlated (appeared to trade-off) with vegetative growth (shoot production). No sex-specific trade-offs were detected. Female sex-expressing shoots were longer than males, but the sexes did not differ in growth traits, asexual traits, sexual induction times, or above- and below-ground biomass. Males, however, had much higher rates of inflorescence production than females, which translated into a significantly higher (24x) prezygotic investment for males relative to females.

Conclusions

Evidence for three distinct ecotypes is presented for a bryophyte based on regeneration traits. Prior to zygote production, the sexes of this bryophyte did not differ in vegetative growth traits but significantly differed in reproductive investment, with the latter differences potentially implicated in the strongly biased female sex ratio. The disparity between males and females for prezygotic reproductive investment is the highest known for bryophytes.  相似文献   

12.
A survey of spatial and temporal variation in the frequency of electrophoretically defined genotypes in the geometrid moth Alsophila pometaria revealed a high diversity of uncommon or rare asexual genotypes and clinal distributions of two of the more common clones. There was substantial year-to-year variation in genotype frequencies in seven of eleven sites. Progeny tests have revealed that sexual reproduction is uncommon in two populations and that new asexual genotypes arise from the sexual population. The recurrent origin of asexual genotypes is likely to account for the high genetic and ecological diversity of the asexual contingent of this species' populations, in contrast to the lower genetic diversity in some obligately asexual species in which such recruitment does not occur.  相似文献   

13.
Cyclical parthenogens, including aphids, are attractive models for comparing the genetic outcomes of sexual and asexual reproduction, which determine their respective evolutionary advantages. In this study, we examined how reproductive mode shapes genetic structure of sexual (cyclically parthenogenetic) and asexual (obligately parthenogenetic) populations of the aphid Rhopalosiphum padi by comparing microsatellite and allozyme data sets. Allozymes showed little polymorphism, confirming earlier studies with these markers. In contrast, microsatellite loci were highly polymorphic and showed patterns very discordant from allozyme loci. In particular, microsatellites revealed strong heterozygote excess in asexual populations, whereas allozymes showed heterozygote deficits. Various hypotheses are explored that could account for the conflicting results of these two types of genetic markers. A strong differentiation between reproductive modes was found with both types of markers. Microsatellites indicated that sexual populations have high allelic polymorphism and heterozygote deficits (possibly because of population subdivision, inbreeding or selection). Little geographical differentiation was found among sexual populations confirming the large dispersal ability of this aphid. In contrast, asexual populations showed less allelic polymorphism but high heterozygosity at most loci. Two alternative hypotheses are proposed to explain this heterozygosity excess: allele sequence divergence during long-term asexuality or hybrid origin of asexual lineages. Clonal diversity of asexual lineages of R. padi was substantial suggesting that they could have frozen genetic diversity from the pool of sexual lineages. Several widespread asexual genotypes were found to persist through time, as already seen in other aphid species, a feature seemingly consistent with the general-purpose genotype hypothesis.  相似文献   

14.
R. S. Chen  B. A. McDonald 《Genetics》1996,142(4):1119-1127
The relative contributions of sexual and asexual reproduction to the genetic structure of populations can be difficult to determine for fungi that use a mixture of both types of propagation. Nuclear RFLPs and DNA fingerprints were used to make indirect and direct measures of departures from random mating in a population of the plant pathogenic fungus Mycosphaerella graminicola during the course of an epidemic cycle. DNA fingerprints resolved 617 different genotypes among 673 isolates sampled from a single field over a 3-month period. Only 7% of the isolates represented asexual clones that were found more than once in the sample. The most common clone was found four times. Genotypic diversity averaged 85% of its maximum possible value during the course of the epidemic. Analyses of multilocus structure showed that allelic distributions among RFLP loci were independent. Pairwise comparisons between individual RFLP loci showed that the majority of alleles at these loci were in gametic equilibrium. Though this fungus has the capacity for a significant level of asexual reproduction, each analysis suggested that M. graminicola populations maintain a genetic structure more consistent with random-mating over the course of an epidemic cycle.  相似文献   

15.
Clonal reproduction in Puccinia triticina, the cause of wheat leaf rust, has long been hypothesized but has never been demonstrated. Using a population genetics approach and microsatellite markers, we analysed genetic diversity of this fungus at each level of genome organisation. Sampling included isolates from two field populations growing on two cultivars carrying specific resistance genes, completed with isolates representing the main pathotypes identified from a national survey. For the two cultivars, populations differentiated according to the distribution of their genotypes and pathotypes. There was a high proportion of repeated genotypes, combined with a significant linkage disequilibrium and a strong negative value for FIS. These three factors, especially heterozygote excess, strongly support the hypothesis of a high rate of clonal reproduction. Each pathotype matched a unique multilocus genotype, except for a few isolates, which were taken to be mutants of the dominant genotype. We discussed the strong relationship between pathotypes and genotypes as the consequence of clonal reproduction combined with a strong selection exerted by host cultivars.  相似文献   

16.
Many aquatic and riparian plant species are characterized by the ability to reproduce both sexually and asexually. Yet, little is known about how spatial variation in sexual and asexual reproduction affects the genotypic diversity within populations of aquatic and riparian plants. We used six polymorphic microsatellites to examine the genetic diversity within and differentiation among 17 populations (606 individuals) of Sparganium emersum, in two Dutch-German rivers. Our study revealed a striking difference between rivers in the mode of reproduction (sexual vs. asexual) within S. emersum populations. The mode of reproduction was strongly related to locally reigning hydrodynamic conditions. Sexually reproducing populations exhibited a greater number of multilocus genotypes compared to asexual populations. The regional population structure suggested higher levels of gene flow among sexually reproducing populations compared to clonal populations. Gene flow was mainly mediated via hydrochoric dispersal of generative propagules (seeds), impeding genetic differentiation among populations even over river distances up to 50 km. Although evidence for hydrochoric dispersal of vegetative propagules (clonal plant fragments) was found, this mechanism appeared to be relatively less important. Bayesian-based assignment procedures revealed a number of immigrants, originating from outside our study area, suggesting intercatchment plant dispersal, possibly the result of waterfowl-mediated seed dispersal. This study demonstrates how variation in local environmental conditions in river systems, resulting in shifting balances of sexual vs. asexual reproduction within populations, will affect the genotypic diversity within populations. This study furthermore cautions against generalizations about dispersal of riparian plant species in river systems.  相似文献   

17.
The occurrence of clonality in threatened plants can have important implications for their conservation. In this study, allozymes and RAPDs were used to determine the extent of clonality in the endangered shrub Haloragodendron lucasii (Haloragaceae), which is known from only four sites within an 8 km range. Allozyme markers identified only six multilocus genotypes among the 53 ramets sampled across the four sites, although a total of 54 different genotypes were possible with the three polymorphic allozyme loci detected. The polymorphic bands detected in the RAPD analysis were capable of producing 246 genotypes, but again only six multilocus genotypes were delineated. The allozyme and RAPD data were congruent at three of the four sites. At the fourth site two genotypes were detected by each marker; however, once combined, three multilocus genotypes were observed. The probabilities that the observed number of replicates of each combined allozyme and RAPD genotype could be generated by sexual reproduction were less than 10–18, leaving little doubt that clonality is the explanation for the observed patterns of genotypes. The genetic conclusions are supported by root excavations which show potential for vegetative reproduction and the observation of no sexual reproduction in the species. The recognition of extensive clonality in H. lucasii has had immediate implications for the conservation management of the species and resulted in changes to the management priorities for the species. Thus it is clear that appropriate genetic studies can play an important role in the management of threatened species.  相似文献   

18.
The maintenance of sexual reproduction is discussed using a model based on the familiar Lotka-Volterra competition equations. Both the equilibrium and the stability conditions that allow a sexual population to resist invasion by a single asexual clone are considered. The equilibrium conditions give results similar to previous models: When the cost of sex, within phenotype niche width, and environmental variance are low, the sexual population coexists with the asexual clone and remains at a high density. However, the asexual clone is never completely excluded. Analysis of the stability conditions shows a different picture: The introduction of an asexual clone considerably reduces the stability of the community. However, owing to its larger total niche width, the sexual population exists partly in a “competitor-free space” where the asexual clone has almost no influence on the outcome of the interactions. Therefore the asexual clone is less stable than the sexual population and has a higher probability of extinction. In contrast, the sexual population does not become extinct, since the extreme phenotypes remain at a stable, though low, density, and the central phenotypes, where stability is low, are recreated every generation through recombination. I therefore conclude that the ecological conditions under which sexual reproduction is favored over asexual reproduction are fairly easily attained and are more general than previous analyses had suggested.  相似文献   

19.
Cyclically parthenogenetic organisms experience benefits of both sexual and asexual reproductive modes in a constant environment. Sexual reproduction generates new genotypes and may facilitate the purging of deleterious mutations whereas asexuality has a two-fold advantage and enables maintenance of well-fitted genotypes. Asexual reproduction can have a drawback as increased linkage may lead to the accumulation of deleterious mutations. This study presents the results of Monte Carlo simulations of small and infinite diploid populations, with deleterious mutations occurring at multiple loci. The recombination rate and the length of the asexual period, interrupted by sexual reproduction, are allowed to vary. Here I show that the fitness of cyclical parthenogenetic population is dependent on the length of the asexual period. Increased length of the asexual period can lead both to increased segregational load following sexual reproduction and to a stronger effect of deleterious mutations on variation at a linked neutral marker, either by reducing or increasing the variation.  相似文献   

20.
The genetic basis of fitness reduction associated with inbreeding is still poorly understood. Here we use associations between allozyme genotypes and fitness to investigate the genetic basis of inbreeding depression in experimental outdoor populations of the water flea, Daphnia magna. In Daphnia, a phase of clonal reproduction follows hatching from sexually produced resting eggs, and changes in genotype frequencies during the clonal phase can be used to estimate fitness. Our experiment resembles natural colonization of ponds in that single clones colonize an empty pool, expand asexually and produce sexual offspring by selfing (sisters mate with their clonal brothers). These offspring diapause and form populations consisting of selfed sibships in the following spring. In 12 of 13 experimental populations, genotypes of selfed hatchlings after diapause conformed to Mendelian expectations. During the subsequent ca. 10 asexual generations, however, genotype frequencies changed significantly at 19 of 27 single loci studied within populations, mostly in favour of heterozygotes, with heterozygosity at multiple loci affecting the change in genotype frequency multiplicatively. Because variance in heterozygosity among siblings at a given marker reflects only heterozygosity in the chromosomal region around this marker, our results suggest that selection at fitness-associated loci in the chromosomal regions near the markers were responsible for these changes. The genotype frequency changes were more consistent with selection acting on linked loci than on the allozymes themselves. Taken together, the evidence for abundant selection in the chromosomal regions of the markers and the fact that changes in genotype frequencies became apparent only after several generations of clonal selection, point to a genetic load consisting of many alleles of small or intermediate effects, which is consistent with the strong genetic differentiation and repeated genetic bottlenecks in the metapopulation from which the animals for this study were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号