首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 773 毫秒
1.
In teleosts, the spinal cord generally extends along the entire vertebral canal. The Tetraodontiformes, in which the spinal cord is greatly reduced in length with a distinct long filum terminale and cauda equina, have been regarded as an aberration. The aims of this study are: 1) to elucidate whether the spinal cord in all tetraodontiform fishes shorten with the filum terminale, and 2) to describe the gross anatomical and histological differences in the spinal cord among all families of the Tetraodontiformes. Representative species from all families of the Tetraodontiformes, and for comparison the carp as a common teleost, were investigated. In the Triacanthodidae, Triacanthidae, and Triodontidae, which are the more ancestral taxa of the Tetraodontiformes, the spinal cord extends through the entire vertebral canal. In the Triacanthidae and Triodontidae, the caudal half or more spinal segments of the spinal cord, however, lack gray matter and consist largely of nerve fibers. In the other tetraodontiform families, the spinal cord is shortened forming a filum terminale with the cauda equina, which is prolonged as far as the last vertebra. The shortened spinal cord is divided into three groups. In the Ostraciidae and Molidae, the spinal cord tapers abruptly at the cranium or first vertebra forming a cord‐like filum terminale. In the Monacanthidae, Tetraodontidae, and Diodontidae, it abruptly flattens at the rostral vertebrae forming a flat filum terminale. The spinal cord is relatively longer in the Monacanthidae than that in the other two families. It is suggested by histological features of the flat filum terminale that shortening of the spinal cord in this group progresses in order of the Monacanthidae, Tetraodontidae, and Diodontidae. In the Balistidae and Aracanidae, the cord is relatively long and then gradually decreased in dorso‐ventral thickness. J. Morphol. 276:290–300, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
The spinal cord of two tetraodontiform fishes, the Japanese file fish (Navodon modestus) and the panther puffer (Takifugu pardalis), are unusual among vertebrates in having a markedly abbreviated spinal cord with a long and flattened filum terminale. Only the rostral short part of the cord of both species is cylindrical; the greater part of the cord is markedly flat. The majority of the spinal nerve roots leave the short cylindrical part. The flattened part of the cord contains the central canal, myelinated nerve fibers, and a few motoneurons surrounding the cauda equina, and it is histologically similar to the filum terminale of amphibians and mammals. The spinal cords of other teleosts, the sun-fish and angler, also are abbreviated and possess a filum terminale and cauda equina. These orders possess an enormous head and short trunk. However, the correlation between this body form and an abbreviated cord is not causal, since the tetraodontiform species described here show ordinary body proportions. The spinal cord may be abbreviated in tetraodontiform fishes in general.  相似文献   

3.
Summary The filum terminale, or terminal portion of the spinal cord, was studied in normal adult frogs (Rana pipiens) by means of light and electron microscopy. Astroglial cells are the predominant elements in this region. The rostral portion of the filum terminale consists mainly of (1) a peripheral dense ring of myelinated and some unmyelinated nerve fibers, and processes of astrocytes terminating at the subpial space; (2) an intermediate zone, in which astrocytes are the main cellular elements in addition to a few degenerated neurons; and (3) a central region where the central canal is lined by dark and light ependymal cells. In the caudal portion of the filum terminale, the amount of neuropil is greatly reduced. This region is formed mainly by astrocytic glial cells and very few neuronal elements. The central canal in the caudal portion is located ventrally and contains a lining consisting almost exclusively of dark ependymal cells.  相似文献   

4.
Choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activity were determined in 23 selected parts of the dog CNS and 4 parts of the peripheral nervous system. Maximum ChAT activity was found in the caudate nucleus and the ventral roots of the spinal cord. High activity was also present in the thalamus, the pons, the cerebral cortex, the medulla oblongata, the ventral spinal horns and the sciatic nerve. The lowest activity was measured in the cerebellum, the dorsal cord roots and the spinal ganglia. Maximum AChE activity was found in the caudate nucleus and the cerebellum. Relatively high activity was also present in the thalamus, the pons, the medulla oblongata, the grey matter of the spinal cord and the spinal ganglia. The lowest AChE activity was measured in the ventral and dorsal spinal roots.  相似文献   

5.
This study deals with some macroscopical, microscopical, and ultrastructural aspects of the spinal cord central canal of the German shepherd dog. The caudal end of the spinal cord is constituted by the conus medullaris, which may extend to the first sacral vertebra, the terminal ventricle, and the filum terminale. The latter structure is considered as internum (second to third sacral vertebrae) or externum (fifth caudal vertebra), according to its relation to the dura mater. Occasionally, there is a second anchorage which is close to the level of the sixth caudal vertebra. The central canal is surrounded by a ciliated ependymal epithelium, which differs depending upon the levels. The most caudal part of the filum terminale bears a columnar ciliated ependymal epithelium surrounded by two layers of glia and pia mater, which separate the central canal from the subarachnoid space. Microfil injections show a communication between the cavity and the subarachnoid space, as the plastic is able to pass through the ependymal epithelium. At the level of the terminal ventricle there are real separations of the ependymal epithelium, which seem to connect the lumen of the spinal canal with the subarachnoid space. These structures probably constitute one of the drainage pathways of the cerebrospinal fluid. The diameter of the central canal is related to the age of the animal. However, even in very old animals the spinal cord central canal reaches the tip of the filum terminale and remains patent until death. At the ultrastructural level the ependymal cells present villi, located on cytoplasmic projections, cilia, dense mitochondria, and oval nuclei. © 1995 Wiley-Liss, Inc.  相似文献   

6.
Connections of the neurons of the spinal cord ventral horn with the structures, situating above have been investigated. After injection of uranyl acetate into the TIII segment of the spinal cord, labelled neurons are found in various reticular nuclei of the medulla oblongata. At the level of the roots of the XII pair of the cranial nerves they are revealed in the reticular paramedian, ventral, parvocellular and lateral nuclei. The formations mentioned participate in regulation of the cardio-vascular system. More rostral (2 and 4 mm relatively to the roots of the XII pair of the cranial nerves) the neurons are observed in the reticular giant cellular nucleus, in nuclei of the raphe and in the group of the P-substance reactive neurons. Besides, labelled neurons are revealed in the posterior, lateral fields and in the dorso- and ventromedial nuclei of the hypothalamus.  相似文献   

7.
An immunohistochemical method, using glutaraldehyde fixation and a highly specific monoclonal antibody recently synthetized against dopamine (DA)-glutaraldehyde protein conjugate, permitted direct visualization of DA structures in the brainstem and spinal cord of a reptile (Chameleon). DA-immunoreactive cell bodies occurred in some contiguous areas of the midbrain tegmentum. The first one was located in the ventral tegmental area. Some somata intermingled with the oculomotor nucleus. The second group was the large round or oval DA-Immunostained neurons located in the substantia nigra. More caudally, a third group of round or fusiform DA-cell bodies was seen in an homologous area of so called mammalian A8 and were continuous with the substantia nigra group. In the medulla oblongata, the DA-containing cells were shown in the nucleus of solitary tract and in the dorsal lateral part of the dorsal motor nucleus of the vagus. The density of this DA-Immunoreactive neurons decreased more caudally. At the medullo-spinal level and upper cervical spinal cord, a few labelled cells were distinguished near the central canal. In the spinal cord DA-immunopositive cell bodies were observed in the vicinity of the central canal and formed a continuous column that extended throughout the rostral spinal cord. The apical processes of these neurons seemed to be in contact with the lumen of the central canal. This study constitute the first visualization of the immunoreactive DA-cell bodies at the medullo-spinal level which were already described, as TH immunoreactive in other species of reptiles.  相似文献   

8.
The filum terminale and caudal ampulla of amphioxus were studied by electron microscopy. The filum terminale consists of ependymal cells whose cilia are directed caudally. Remarkably, nerve fibres course through the filum terminale and caudal ampulla and end on the basal lamina forming neuro-connective structures. Moreover, these nerve boutons are divisible into several classes according to their vesicle content. Boutons containing large dense-cored vesicles are very similar in appearance to the neurosecretory terminals found in the caudal spinal cord of some vertebrates. These observations on nerve fibres suggest that a primitive neurosecretory system similar to the fish urophysis is present in the amphioxus.  相似文献   

9.
40 adult cats were made hydrocephalic by intracisternal injection of 200 mg Kaolin. 34 survived between 24 hours to 4 months. In 19 cases a ventriculostomy was carried out, whereby in 13 animals a contrast filling of the central canal occurred. The contrast medium injected into the ventricles entered the external CSF-space in the lumbo-sacral junction of the filum terminale. Light- and electron-microscopic studies showed adaptive structural changes of the central canal epithelium in the early stages. In later stages massive destructions of ependyma and spinal cord parenchyma were found.  相似文献   

10.
In development of respiratory function in rats, mice, and other representatives of placental animals there exists the general plan of formation of rhythm: from single contraction of respiratory musculature to formation of bursts and complexes alternating periodically with pauses and apnea intervals and subsequent rhythm stabilization. These peculiarities are closely connected with the states of sleep and consciousness. A concept is put forward about a certain sequence of functional maturation and ways of regulation of activity of the respiratory rhythm central pacemaker. At the first stage the autogenic rhythmical activity is determined by pacemaker properties of a part of neurons of the medulla rostral ventrolateral part. It is not ruled out that the first respiratory discharges in spinal cord ventral roots might have been a manifestation of the nervous network rhythmogenic properties. The direct sensitivity of central neurons to chemical composition if the medium and to some neutomodulators serves as the first regulatory mechanism. Somewhat later, inhibitory control is established from supramedullary structures, with an increase of role of peripheral receptors in regulation of respiration.  相似文献   

11.
In development of respiratory function in rats, mice, and other representatives of placental animals there exists the general plan of formation of rhythm: from single contractions of respiratory musculature to formation of bursts and complexes alternating periodically with pauses and apnea intervals and subsequent rhythm stabilization. These peculiarities are closely connected with the states of sleep and wakefulness. A concept is put forward about a certain sequence of functional maturation and ways of regulation of activity of the breathing rhythm pacemaker. At the first stage the autogenic rhythmical activity is determined by pacemaker properties of a part of neurons of the medulla rostral ventrolateral part. It cannot be ruled out that the first respiratory discharges in spinal cord ventral roots might have been a manifestation of the nervous network rhythmogenic properties. The direct sensitivity of central neurons to chemical composition of the medium and to some neuromodulators serves as the first regulatory mechanism. Somewhat later, inhibitory control is established from supramedullary structures, with an increase of the role of peripheral receptors in regulation of respiration.  相似文献   

12.
Summary Reissner's fiber (RF) of the subcommissural organ (SCO), the central canal and its bordering structures, and the filum terminale were investigated in the bovine spinal cord by use of transmission electron microscopy, histochemical methods and light-microscopic immunocytochemistry. The primary antisera were raised against the bovine RF, or the SCO proper. Comparative immunocytochemical studies were also performed on the lumbo-sacral region of the rat, rabbit, dog and pig.At all levels of the bovine spinal cord, RF was strongly immunoreactive with both antisera. From cervical to upper sacral levels of the bovine spinal cord there was an increasing number of ependymal cells immunostainable with both antisera. The free surface of the central canal was covered by a layer of immunoreactive material. At sacral levels small subependymal immunoreactive cells were observed. From all these structures sharing the same immunoreactivity, only RF was stained by the paraldehyde-fuchsin and periodicacid-Schiff methods.At the ultrastructural level, ependymal cells with numerous protrusions extending into the central canal were seen in the lower lumbar segments, whereas cells displaying signs of secretory activity were principally found in the ependyma of the upper sacral levels. A few cerebrospinal fluid-contacting neurons were observed at all levels of the spinal cord; they were immunostained with an anti-tubulin serum.The lumbo-sacral segments of the dog, rat and rabbit, either fixed by vascular perfusion or in the same manner as the bovine material, did not show any immunoreactive structure other than RF.The possibilities that the immunoreactive ependymal cells might play a secretory or an absorptive role, or be the result of post-mortem events, are discussed.Supported by Grant I/38259 from the Stiftung Volkswagenwerk, Federal Republic of Germany, and Grant RS-82-18 from the Dirección de Investigaciones, Universidad Austral de ChileThe authors wish to thank Dr. Enrique Romeny from the Valdivia abattoir for kindly providing the bovine spinal cords  相似文献   

13.
Summary The caudal neurosecretory system of Clupea melanostoma is described. The urophyseal area in this species is merely a spinal cord enlargement divided into two distinct zones: a ventral and ventrolateral vascular zone where neurosecretory material is concentrated, and a dorsal cell-rich area where the perikarya of the neurosecretory cells are found.The hypothesis is advanced that the first-named vascular area has developed into the more differentiated urophysis of the less primitive teleosts while the dorsal cell-rich area has become part of the filum terminale. Two main types of neurosecretory cells are described.This work was supported by grant L 96 Z from the Consejo Nacional de Investigaciones Cientificas y Técnicas.  相似文献   

14.
Localization of sympathoexcitatory neurons regulating in the ventrolateral medulla area participating in the heart rate regulation has been studied. Results suggest, that sympathoexcitatory neurons in the cat are confined to a definite region (middle line of roots of XII nerve and by 4.0 mm more rostral) of rostral ventrolateral medulla. Stimulation of these right regions increases the heart rate, but that of the left regions elevates dp/dt max. Their activity mediated pathways (conduction velocity 10.5 + 0.4 m/s and 6.1 + 0.4 m/s) innervated of "nonclassical" sympathetic neurons of the ventral horn and sympathetic preganglionic neurons of intermediolateral cell column of the spinal cord.  相似文献   

15.
The occurrence and distribution of neurotensin-immunoreactive (NT-IR) perikarya was studied in the central nervous system of the guinea pig using a newly raised antibody (KN 1). Numerous NT-IR perikarya were found in the nuclei amygdaloidei, nuclei septi interventriculare, hypothalamus, nucleus parafascicularis thalami, substantia grisea centralis mesencephali, ventral medulla oblongata, nucleus solitarius and spinal cord. The distribution of NT-IR perikarya was similar to that previously described in the rat and monkey. In the gyrus cinguli, hippocampus and nucleus olfactorius, though, no NT-IR neurons were detected in this investigation. Additional immunoreactive perikarya, however, were observed in areas of the ventral medulla oblongata, namely in the nucleus paragigantocellularis, nucleus retrofacialis and nucleus raphe obscurus. The relevance of the NT-IR perikarya within the ventral medulla oblongata is discussed with respect to other neuropeptides, which are found in this area, and to cardiovascular regulation.  相似文献   

16.
Horseradish peroxidase histochemical studies of afferent and efferent projections of the trigeminal nerve in two species of chondrostean fishes revealed medial, descending and ascending projections. Entering fibers of the trigeminal sensory root project medially to terminate in the medial trigeminal nucleus, located along the medial wall of the rostral medulla. Other entering sensory fibers turn caudally within the medulla, forming the trigeminal spinal tract, and terminate within the descending trigeminal nucleus. The descending trigeminal nucleus consists of dorsal (DTNd) and ventral (DTNv) components. Fibers of the trigeminal spinal tract descend through the lateral alar medulla and into the dorsolateral cervical spinal cord. Fibers exit the spinal tract throughout its length, projecting to the ventral descending trigeminal nucleus (DTNv) in the medulla and to the funicular nucleus at the obex. Retrograde transport of HRP through sensory root fibers also revealed an ascending bundle of fibers that constitutes the neurites of the mesencephalic trigeminal nucleus, cell bodies of which are located in the rostral optic tectum. Retrograde transport of HRP through motor root fibers labeled ipsilateral cells of the trigeminal motor nucleus, located in the rostral branchiomeric motor column.  相似文献   

17.
心外膜应用腺苷时c—fos在脊髓延髓和丘脑中的表达   总被引:2,自引:0,他引:2  
马秀英  张连珊 《生理学报》1997,49(4):395-399
在12只切断两侧缓冲神经和迷走神经的麻醉大鼠,观察了心外膜应用腺苷对脊髓,延髓和丘脑c-fos原部基因表达的影响。结果显示:心外膜应用腺苷组大鼠,动脉血压和心率无明显变化;脊髓T3节段背角,延髓巨细胞旁外侧核以及丘脑的腹后外侧核,后核,中央外侧核和束旁核等部位Fos蛋白样免疫阳性反应神经元显著增加;而在溶剂对照组大鼠,仅见少数FLI细胞。  相似文献   

18.
Summary The caudal spinal cord of the coho salmon was investigated by means of immunocytochemistry using antisera against serotonin, urotensin I, urotensin II, somatostatin and a urea-extract of bovine Reissner's fiber (AFRU). Populations of serotonin-immunoreactive (IR) neurons were found rostral and dorsal to the urophysis in close spatial association with caudal secretory neurons. Thick, smooth serotonin-IR processes extended toward the external surface of the spinal cord where they displayed conspicuous terminal dilatations. Thin, beaded serotonin-IR fibers appeared to innervate populations of caudal secretory and somatostatin-IR cerebrospinal fluid-contacting neurons. Most caudal neurosecretory cells displayed both urotensin I and urotensin II immunoreactivities; only a minority reacted exclusively with either urotensin I or urotensin II antisera. Urotensin II-IR and somatostatin-IR cerebrospinal fluid (CSF)-contacting neurons were found as an integral component of the central canal wall in the caudal spinal cord and filum terminale; their dendritic processes appeared to contact Reissner's fiber, which displayed a weak AFRU-immunoreactivity while inside the central canal, but became strongly reactive in the interior of the terminal ventricle as it formed the massa caudalis. The distribution of serotoninergic processes points to a regulatory role in the function of caudal secretory and CSF-contacting neurons and to a putative serotonin release into the subarachnoid space and/or meningeal vasculature. It is also suggested that the CSF-contacting neurons of the central canal may participate in a feedback mechanism controlling the secretory activity of the subcommissural organ.Supported by Grant A/1095-1 from the International Foundation for Science, Sweden, to C.Y.; Grant I/63-476 from Volkswagen-Stiftung to E.R.; and Grant S-85-39 from the Dirección de Investigaciones, Universidad Austral de Chile  相似文献   

19.
目的探讨显示皮质脊髓束在成年小鼠脑和脊髓中定位分布的简便有效方法。方法运用蛋白激酶Cγ(PKCγ)免疫组织化学染色法,观察成年ICR小鼠脑和脊髓中皮质脊髓束的定位和分布情况。结果PKCγ免疫阳性产物分布于大脑运动皮层第V层锥体细胞胞体和轴突中,锥体细胞的阳性纤维经内囊、中脑大脑脚底、脑桥基底部、下行至延髓锥体中。在延髓下段,PKCγ阳性纤维经锥体交叉后进入对侧脊髓灰质后联合背侧,形成背侧皮质脊髓束,在脊髓白质的后索腹侧深层下行,至骶髓3-4节段以下逐渐消失。在整个脊髓前索和外侧索中未见有PKCγ阳性纤维。结论PKCγ特异地表达于脊髓后索皮质脊髓束中,提示PKCγ免疫组织化学法是一种显示和观察皮质脊髓束精确定位的有效方法。  相似文献   

20.
The ependyma of the central canal of the spinal cord of the monkey Cercopithecus nigroviridis was examined by transmission electron microscopy. In the lumbar region and in the filum terminale, many cytoplasmatic protrusions are visible. They are irregular in size and shape and display many microvilli. They are extending into the lumen of the central canal. The basal parts of the ependymocytes occasionally have a very close association with the ependymal blood vessels. The pericapillary space, the pericapillary structures like pericytes and collagen fibrils, and the basal lamina are absent. Opposite branches of the ependymocytes growing together could be observed in the central canal, eventually forming a cytoplasmic unit. Cytoplasmatic extensions of the ependymocytes bridge the lumen of the central canal and melt into each another. Lacunae, such as described by LEONHARDT (1980) in the apical cytoplasm of the ependyma in the rabbit, do also exist in the ependyma coating the central canal of the spinal cord of the monkey Cercopithecus nigroviridis. Some of these lacunae have direct contact to the luminar surface of the central canal, others are separated. Cilia and short microvilli are coating the lacunae. Adjacent ependymal cells form complex interdigitations with each other. Close to their surface on the central canal, there are numerous zonulae adhaerentes. Profiles of the granular and agranular endoplasmatic reticulum are in very close contact to the fine filaments of the zonulae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号