首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The expression of different connexin genes (cx26, cx32, cx37, cx43) that code for the protein subunits of gap junctions, was investigated in various uterine tissues during the estrous cycle of nonpregnant rats, in pregnant rats at decidualization and at term. Connexin gene expression was studied at the mRNA level by Northern blot hybridization and at the protein level by immunocytochemistry. In gap junctions from uterine epithelium, stroma, or myometrium, connexin 26 and/or connexin 43 are much more abundant than connexins 32 and 37. The expression of connexin 26 and 43 appears to be modulated by maternal steroid hormones. High expression of these connexins is found in developing decidual cells by day 7 to 8 post coitum; furthermore, coexpression of connexins 26 and 43 in myometrium is observed just before delivery on day 21 post coitum. In both the decidua and the myometrium, the connexin 26 protein appears to be distributed in lower abundance than connexin 43. In uterine epithelium only connexin 26 is expressed throughout all of the reproductive phases investigated. The enhanced expression of this gene correlates with higher levels of maternal estrogen both in the proestrus/estrus phase and at term. The distinct spatial and temporal pattern of expression of connexins 26 and 43 in different uterine tissues suggests a physiological role for these proteins during embryo implantation and subsequent contraction of the uterus at birth.  相似文献   

2.
3.
The P19 embryonal carcinoma cell line represents a pluripotential stem cell that can differentiate along the neural or muscle cell lineage when exposed to different environments. Exposure to retinoic acid induces P19 cells to differentiate into neurons and astrocytes that express similar developmental markers as their embryonic counterparts. We examined the expression of gap junction genes during differentiation of these stem cells into neurons and astrocytes. Untreated P19 cells express at least two gap junction proteins, connexins 26 and 43. Connexin32 could not be detected in these cells. Treatment for 96 hr with 0.3 mM retinoic acid induced the P19 cells to differentiate first into neurons followed by astrocytes. Retinoic acid produced a decrease in connexin43 mRNA, protein, and functional gap junctions. Connexin26 message was not affected by retinoic acid treatment. The neurons that developed consisted of small round cell bodies extending two to three neurites and expressed MAP2. Connexin26 was detected at sites of cell–cell and cell–neurite contact within 3 days following differentiation with retinoic acid. The astrocytes were examined for production of their intermediate filament marker, glial fibrillary acidic protein (GFAP). GFAP was first detected at 8 days by Western blotting. In culture, astrocytes co-expressed GFAP and connexin43 similar to primary cultures of mouse brain astrocytes. These results suggest that differentiation of neurons and glial cells involves specific connexin expression in each cell type. The P19 cell line will provide a valuable model with which to examine the role gap junctions play during differentiation events of developing neurons and astrocytes. Dev. Genet. 21:187–200, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
5.
Transiently blocking the expression of the gap junction protein connexin43 using antisense oligodeoxynucleotides or blocking hemichannels with connexin mimetic peptides has been shown to significantly improve outcomes in a range of acute wound models. Less is known about their likely effects in nonhealing wounds. In the eye, prolonged inflammation and lack of epithelial recovery in nonhealing corneal epithelial wounds may lead to corneal opacity, blindness or enucleation. We report here the first human applications of antisense oligodeoxynucleotides that transiently block translation of connexin43 in a prospective study of five eyes with severe ocular surface burns (persistent epithelial defects), which were unresponsive to established therapy for 7 days to 8 weeks prior to treatment. Connexin43-specific antisense oligodeoxynucleotide was delivered in cold, thermoreversible Poloxamer407 gel under either an amniotic membrane graft or a bandage contact lens. The connexin43-specific antisense application reduced inflammation within 1–2 days, and in all five eyes complete and stable corneal reepithelialization was obtained. Recovery of the vascular bed and limbal reperfusion appeared to precede corneal epithelial recovery. We conclude that connexin modulation provides a number of benefits for nonhealing ocular burn wounds, one of which is to promote vascular recovery.  相似文献   

6.
Gap junctions, composed of proteins from the connexin family, allow for intercellular communication between cells in tissues and are important in development, tissue/cellular homeostasis, and carcinogenesis. Genome databases indicate that there are at least 20 connexins in the mouse and human. Connexin phosphorylation has been implicated in connexin assembly into gap junctions, gap junction turnover, and cell signaling events that occur in response to tumor promoters and oncogenes. Connexin43 (Cx43), the most widely expressed and abundant gap junction protein, can be phosphorylated at several different serine and tyrosine residues. Here, we focus on the dynamic regulation of Cx43 phosphorylation in tissue and how these regulatory events are affected during development, wound healing, and carcinogenesis. The activation of several kinases, including protein kinase A, protein kinase C, p34cdc2/cyclin B kinase, casein kinase 1, mitogen-activated protein kinase, and pp60src kinase, can lead to the phosphorylation of different residues in the C-terminal region of Cx43. The use of antibodies specific for phosphorylation at defined residues has allowed the examination of specific phosphorylation events both in tissue culture and in vivo. These new antibody tools and those under development will allow us to correlate specific phosphorylation events with changes in connexin function.  相似文献   

7.
8.
Analysis of connexin phosphorylation sites   总被引:7,自引:0,他引:7  
Most connexins, the proteins that form gap junction channels, are phosphoproteins. Connexin phosphorylation has been thought to regulate gap junctional protein trafficking, gap junction assembly, channel gating, and turnover. Connexin phosphorylation has been investigated in a variety of ways. Some connexins show mobility shifts in sodium dodecyl sulfate-polyacrylamide gel electrophoresis on phosphorylation. Kinase modulators can change the level of connexin phosphorylation and affect gap junctional communication levels. Metabolic labeling of cultured cells has allowed both phosphoamino acid identification and generation of phosphotryptic peptide maps. However, identification of the location of phosphorylated residues within the connexin sequence has required either targeted peptide synthesis, in vitro phosphorylation of known sites, and two-dimensional comigration studies or liquid chromatographic separation and N-terminal sequencing of peptides. In addition to these conventional methods, we discuss new applications of mass spectrometry to the identification of phosphorylated peptides and the specific residues phosphorylated within the connexin-derived peptide.  相似文献   

9.
Gap junctions are composed of connexins and are critical for the maintenance of the differentiated state. Consistently, connexin expression is impaired in most cancer cells, and forced expression of connexins following cDNA transfection reverses the tumor phenotype. We have found that the restoration of density inhibition of human pancreatic cancer cells by the antiproliferative somatostatin receptor 2 (sst2) is due to overexpression of endogenous connexins Cx26 and Cx43 and consequent formation of functional gap junctions. Immunoblotting along with protein metabolic labeling and mRNA monitoring revealed that connexin expression is enhanced at the level of translation but is not sensitive to the inhibition of cap-dependent translation initiation. Furthermore, we identified a new internal ribosome entry site (IRES) in the Cx26 mRNA. The activity of Cx26 IRES and that of the previously described Cx43 IRES are enhanced in density-inhibited cells. These data indicate that the restoration of functional gap junctions is likely a critical event in the antiproliferative action of the sst2 receptor. We further suggest that the existence of IRESes in connexin mRNAs permits connexin expression in density-inhibited or differentiated cells, where cap-dependent translation is generally reduced.  相似文献   

10.
Connexin45 is a gap junction protein which forms channels with unique characteristics. RNA blots demonstrated that connexin45 is expressed in a number of cell lines including WB, SK Hepl, BHK, A7r5, CLEM, and BWEM cells. Connexin45 was further studied in BWEM cells using specific affinity-purified antibodies directed against a synthetic peptide representing amino acids 285–298 of its sequence. Immunofluorescence experiments demonstrated that the BWEM cells expressed both connexin43 and connexin45 and that these connexins colocalized. Connexin45 polypeptide, immunoprecipitated from BWEM cells metabolically labeled with [35S]-methionine, consisted of a predominant 48 kD polypeptide. Connexin45 and connexin43 contained radioactive phosphate when immunoprecipitated from BWEM cells metabolically labeled with [32P]-orthophosphoric acid. This phosphate label was removed from connexin45 by alkaline phosphatase digestion. Treatment of BWEM cells with the tumor promoting agent 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibited intercellular passage of microinjected Lucifer yellow. While TPA treatment induced phosphorylation of connexin43 in these cells, it reduced the expression of connexin45. Furthermore, the connexin45 expressed after TPA treatment was not phosphorylated. These results suggest that treatments which alter protein phosphorylation may regulate connexin43 and connexin45 in BWEM cells by different mechanisms.These studies were supported by National Institutes of Health grants HL45466 and EY08368. J.G.L. is supported by a fellowship from the Lucille P. Markey Foundation. E.C.B. is an Established Investigator of the American Heart Association.  相似文献   

11.
Gap junctions, composed of proteins from the connexin family, allow for intercellular communication between cells in essentially all tissues. There are 21 connexin genes in the human genome and different tissues express different connexin genes. Most connexins are known to be phosphoproteins. Phosphorylation can regulate connexin assembly into gap junctions, gap junction turnover and channel gating. Given the importance of gap junctions in development, proliferation and carcinogenesis, regulation of gap junction phosphorylation in response to wounding, hypoxia and other tissue insults is proving to be critical for cellular response and return to homeostasis. Connexin43 (Cx43) is the most widely and highly expressed gap junction protein, both in cell culture models and in humans, thus more research has been done on it and more reagents to it are available. In particular, antibodies that can report Cx43 phosphorylation status have been created allowing temporal examination of specific phosphorylation events in vivo. This review is focused on the use of these antibodies in tissue in situ, predominantly looking at Cx43 phosphorylation in brain, heart, endothelium and epithelium with reference to other connexins where data is available. These data allow us to begin to correlate specific phosphorylation events with changes in cell and tissue function. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

12.
13.
To study the function of connexins in human keratinocytes, we have used a three-dimensional culture system, in which a tissue is reconstructed using cells from the outer root sheet of hair follicles. This tissue reproduces in vitro the histological organisation of human epidermis in situ and the normal distribution of several keratinocyte markers. Furthermore, it shows characteristics of a differentiating epidermis, including the expression of connexin26. Connexin26 protein expression is increased under physiological and pathological conditions resulting in increased keratinocyte turnover. Loss of this protein in keratinocytes, obtained from patients carrying a stop mutation, resulted in a reduced stratification of the in vitro reconstructed tissue, probably due to a lower proliferation and migration capacity of the keratinocytes, although dye coupling and persistence of other gap junctions is maintained. No changes were seen in tissues reconstructed with keratinocytes from patients carrying a non stop mutation of connexin30. The data indicate that, at least in vitro, connexin26 affects the function of human keratinocytes, independently of obvious changes in coupling.  相似文献   

14.
To study the function of connexins in human keratinocytes, we have used a three-dimensional culture system, in which a tissue is reconstructed using cells from the outer root sheet of hair follicles. This tissue reproduces in vitro the histological organisation of human epidermis in situ and the normal distribution of several keratinocyte markers. Furthermore, it shows characteristics of a differentiating epidermis, including the expression of connexin26. Connexin26 protein expression is increased under physiological and pathological conditions resulting in increased keratinocyte turnover. Loss of this protein in keratinocytes, obtained from patients carrying a stop mutation, resulted in a reduced stratification of the in vitro reconstructed tissue, probably due to a lower proliferation and migration capacity of the keratinocytes, although dye coupling and persistence of other gap junctions is maintained. No changes were seen in tissues reconstructed with keratinocytes from patients carrying a non stop mutation of connexin30. The data indicate that, at least in vitro, connexin26 affects the function of human keratinocytes, independently of obvious changes in coupling.  相似文献   

15.
Eight different connexins are expressed in mouse epidermis with overlapping expression patterns in different epidermal layers. Analyses of mice with deficiency or modifications of distinct connexins yielded insights into the large variety of connexins in the epidermis. Connexin43 (Cx43) deficiency in mouse epidermis resulted in a significant acceleration of wound closure. Truncation by 125 amino acid residues of the Cx43 C-terminal region led to an altered epidermal expression pattern of Cx43 and defective development of the epidermal water barrier in transgenic mice, although the truncated Cx43 protein could still form open gap junctional channels in transfected HeLa cells. Thus, the phenotypic abnormalities observed in mice with truncated Cx43 protein (Cx43K258Stop) are more likely due to defective regulation of this protein rather than the closed Cx43 channel. Our studies of connexin-deficient mice revealed an extensive redundancy of connexins expressed in mouse epidermis. Epidermal connexins seem to form two functional groups in which deficiency of one connexin isoform can be compensated by other connexin isoforms of the same group.  相似文献   

16.
17.
Cells within a tissue continuously interact to coordinate normal tissue functions and maintain homeostasis. Gap junctional communication (GJC), mediated by the connexin protein family, allows this type of intercellular crosstalk resulting in synchronized and cooperative tissue behavior such as cardiac contraction. In cancer, loss of these types of cell:cell interactions has been shown to facilitate tumorigenesis and enable the autonomous cell behavior associated with transformed cells. Indeed, many human tumor lines demonstrate deficient or aberrant GJC and/or loss of connexin expression. Restoration of exogenous connexin expression/GJC function is correlated with increased cell growth control both in vitro and in vivo. In support of this growth regulatory hypothesis, decreased connexin expression has been observed in situ in early human neoplasia of various organs. Additionally, genetically engineered mice lacking particular connexins (Connexins 32 or 43) exhibit increased susceptibility to radiation and chemically-induced liver and/or lung tumorigenesis. These studies strongly suggest that connexins and GJC serve a tumor suppressor role. Consistent with this proposed role, in a model cell culture system, retinoids and carotenoids up-regulate Connexin43 (Cx43) expression in direct proportion to their ability to suppress carcinogen-induced neoplastic transformation. Here, we discuss the important role of connexins and GJC in tumorigenesis and suggest the possibility of connexins as potential anti-oncogenic targets for chemoprevention and/or chemotherapy.  相似文献   

18.
Gap junction communication (GJC) is involved in controlling cell proliferation and differentiation. Alterations in GJC are associated with carcinogenesis, but the mechanisms involved are unknown. Chloral hydrate (CH), a by-product of chlorine disinfection of water, is carcinogenic in mice, and we demonstrated that CH reduced GJC in a rat liver epithelial cell line (Clone 9). To examine the mechanism(s) by which CH inhibits GJC, Clone 9 cells treated with CH were examined using Western blot, real-time polymerase chain reaction, immunocytochemical, and dye-communication techniques. Treatment with CH (0.1–5 mM for 24 h) resulted in a dose-dependent inhibition of GJC as measured by Lucifer yellow dye transfer. Western blot analysis demonstrated expression of connexin (Cx) 43 and 26 in control cells and reduced expression of Cx 43 but not Cx 26 protein from 0.1 to 1 mM CH. CH treatment from 2.5 to 5 mM caused an apparent increase in expression of both connexins that was concomitant with a reduction in mRNA expression for both connexins. Similarly, with immunocytochemistry, a dose-dependent decrease in Cx 43 staining at sites of cell–cell contact was apparent in CH (0.5–5 mM)-treated cultures, whereas no Cx 26 staining was observed. Thus, Clone 9 cells contain two types of connexins but only one type of plasma membrane channel. Understanding of the regulation of connexin may shed light on mechanisms responsible for inhibition of GJC by chemical carcinogens.  相似文献   

19.
Phosphorylation of gap junction proteins, connexins, plays a role in global signaling events involving kinases. Connexin43 (Cx43), a ubiquitous and important connexin, has several phosphorylation sites for specific kinases. We appended an imaging reporter tag for the activity of the δ isoform of protein kinase C (PKCδ) to the carboxyl terminus of Cx43. The FRET signal of this reporter is inversely related to the phosphorylation of serine 368 of Cx43. By activating PKC with the phorbol ester phorbol 12,13-dibutyrate (PDBu) or a natural stimulant, UTP, time lapse live cell imaging movies indicated phosphorylated Ser-368 Cx43 separated into discrete domains within gap junctions and was internalized in small vesicles, after which it was degraded by lysosomes and proteasomes. Mutation of Ser-368 to an Ala eliminated the response to PDBu and changes in phosphorylation of the reporter. A phosphatase inhibitor, calyculin A, does not change this pattern, indicating PKC phosphorylation causes degradation of Cx43 without dephosphorylation, which is in accordance with current hypotheses that cells control their intercellular communication by a fast and constant turnover of connexins, using phosphorylation as part of this mechanism.  相似文献   

20.
Dendritic cells (DCs) in culture express at least connexin43, a protein subunit of gap junctions, and form gap junction channels, which could be important for T-cells activation. Here, we evaluated whether DCs express connexins in vivo and also to identify components of their microenvironment that regulate the functional expression of gap junctions. In vivo studies were performed in lymph nodes of mice under control conditions or after skeletal muscle damage. In double immunolabeling studies, connexin45 was frequently detected in DEC205(+) DCs in lymph nodes of control animals, whereas connexin43 was rarely found in DCs. However, connexin43 was upregulated in DCs after skeletal muscle damage. Upregulation of connexin43 gene expression by tissue damage was also confirmed in mice carrying a beta-galactosidase reporter gene in a connexin43 allele. The effect of several cytokines on the expression of functional gap junctions between cultured DCs was also tested. Under control conditions, cultured DCs did not communicate via gap junctions. However, after treatment with keratinocyte-conditioned medium or cytokine mixtures containing at least TNF-alpha and IL-1beta, they became transiently coupled through a pathway sensitive to octanol, a gap junction blocker. Cellular coupling induced by effective cytokine mixtures was prevented by IL-6. Single cytokines (TNF-alpha, IL-1beta, IFN-gamma, or IL-6) or other mixtures than the described above did not induce coupling via gap junctions. Increased levels of connexin43 and connexin45 protein and mRNA accompanied the appearance of cellular coupling. These studies provide demonstration of connexin expression and regulation by specific danger signals in DCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号