首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the past decade, much progress has been made in understanding the mechanisms that govern sorting of proteins to the peroxisomal lumen. This article summarizes the principal features of how peroxisomal matrix enzymes are thought to reach the peroxisome. In addition, it describes recent data that indicate that, in specific pex mutants of the methylotrophic yeast Hansenula polymorpha, defects in matrix protein import can be (partly) rescued by overproduction of the receptor essential for import of these proteins. The implication of these results on the mechanisms of matrix protein import is discussed.  相似文献   

2.
Peroxisomal matrix protein import: the transient pore model   总被引:1,自引:0,他引:1  
Peroxisomes import folded, even oligomeric, proteins, which distinguishes the peroxisomal translocation machinery from the well-characterized translocons of other organelles. How proteins are transported across the peroxisomal membrane is unclear. Here, we propose a mechanistic model that conceptually divides the import process into three consecutive steps: the formation of a translocation pore by the import receptor, the ubiquitylation of the import receptors, and pore disassembly/ receptor recycling.  相似文献   

3.
Of the approximately 20 proteins required for peroxisome biogenesis, only four have been implicated in the process of peroxisomal membrane protein (PMP) import: Pex3p, Pex16p, Pex17p, and Pex19p. To improve our understanding of the role that Pex17p plays in PMP import, we examined the behavior of PMPs in a Pichia pastoris pex17 mutant. Relative to wild-type cells, pex17 cells appeared to have a mild reduction in PMP stability and slightly aberrant PMP behavior in subcellular fractionation experiments. However, we also found that the behavior of PMPs in the pex17 mutant was indistinguishable from PMP behavior in a pex5 mutant, which has no defect in PMP import, and was far different from PMP behavior in a pex3 mutant, which has a bona fide defect in PMP import. Furthermore, we found that a pex14 mutant, which has no defect in PMP import, lacks detectable levels of Pex17p. Based on these and other results, we propose that Pex17p acts primarily in the matrix protein import pathway and does not play an important role in PMP import.  相似文献   

4.
We have previously demonstrated that firefly luciferase can be imported into peroxisomes of both insect and mammalian cells. To determine whether the process of protein transport into the peroxisome is functionally similar in more widely divergent eukaryotes, the cDNA encoding firefly luciferase was expressed in both yeast and plant cells. Luciferase was translocated into peroxisomes in each type of organism. Experiments were also performed to determine whether a yeast peroxisomal protein could be transported to peroxisomes in mammalian cells. We observed that a C-terminal segment of the yeast (Candida boidinii) peroxisomal protein PMP20 could act as a peroxisomal targeting signal in mammalian cells. These results suggest that at least one mechanism of protein translocation into peroxisomes has been conserved throughout eukaryotic evolution.  相似文献   

5.
Peroxisomal protein import and ERAD: variations on a common theme   总被引:1,自引:0,他引:1  
Despite their distinct biological functions, there is a surprising similarity between the composition of the machinery that imports proteins into peroxisomes and the machinery that degrades endoplasmic reticulum (ER)-associated proteins. The basis of this similarity lies in the fact that both machineries make use of the same basic mechanistic principle: the tagging of a substrate by monoubiquitylation or polyubiquitylation and its subsequent recognition and ATP-dependent removal from a membrane by ATPases of the ATPases associated with diverse cellular activities (AAA) family of proteins. We propose that the ER-associated protein degradation (ERAD)-like removal of the peroxisomal import receptor is mechanically coupled to protein translocation into the organelle, giving rise to a new concept of export-driven import.  相似文献   

6.
Segregation of preeclampsia into early-onset, placental and late-onset, maternal subtypes along with the acknowledgement of the contribution of epigenetics in placentally expressed genes proved to be a key first step in the identification of essential gene variants associated with preeclampsia. Application of this insight to other populations and related pregnancy-induced syndromes, such as HELLP, and acknowledgment of the features shared between chromosomal loci associated with preeclampsia in different populations provide the rationale for new strategies for the identification of susceptibility genes and for new and more effective diagnostic strategies. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

7.
1. Most proteins of cell organelles are synthesized as precursor proteins on cytosolic polysomes and are directed by signal sequences into the correct compartments. 2. In this review, the characteristics of mitochondrial protein uptake will be described, including the specific recognition, membrane translocation, proteolytic processing and folding of nuclear-encoded precursor proteins. 3. Recent studies indicate that a proteinaceous machinery located in the mitochondrial membranes and matrix performs these key steps of protein import.  相似文献   

8.
9.
Mitochondrial protein import   总被引:1,自引:0,他引:1  
Most polypeptides of mitochondria are imported from the cytosol. Precursor proteins contain targeting and sorting information, often in the form of amino-terminal presequences. Precursors first bind to receptors in the outer membrane. Two putative import receptors have been identified: a 19-kilodalton protein (MOM19) inNeurospora mitochondria, and a 70-kilodalton protein (MAS70) in yeast. Some precursors integrate directly into the outer membrane, but the majority are translocated through one or both membranes. This process requires an electrochemical potential across the inner membrane. Import appears to occur through a hydrophilic pore, although the inner and outer membranes may contain functionally separate translocation machineries. In yeast, a 42-kilodalton protein (ISP42) probably forms part of the outer membrane channel. After import, precursors interact with chaperonin ATPases in the matrix. Presequences then are removed by the matrix protease. Finally, some proteins are retranslocated across the inner membrane to the intermembrane space.  相似文献   

10.
The concept that there are human disease states that are associated with abnormal peroxisomal function is of recent origin. This is due in part to the relatively recent discovery of the organelle itself by de Duve in 1983, and to the earlier belief that it was a vestigial structure in mammals. The recognition that the organelle is significant in mammals was ushered in by Paul Lazarow's observation that rat peroxisomes catalyze the beta-oxidation of fatty acids. By 1981, more than 40 enzymes had been localized to the peroxisome, and the number continues to grow. Respect for the physiological role of the peroxisome in man has been heightened by our recent recognition that peroxisome malfunction causes profound disturbances. The Zellweger cerebro-hepato-renal syndrome represents the most serious peroxisomal disease. It is associated with malfunction of virtually every organ, and children with the disease usually do not survive beyond the 4th month. Application of newly developed diagnostic techniques has shown that the clinical spectrum and frequency of peroxisomal disorders are greater than had been realized. Eleven separate peroxisomal disorders have now been identified. Our laboratory alone has identified more than 2000 patients. Disturbances of very long chain fatty acid and ether phospholipid metabolism are present in 9 of the 11 peroxisomal disorders. In this presentation, we will provide an overview of the peroxisomal disorders, with emphasis on disturbances of fatty acid and ether lipid metabolism.  相似文献   

11.
Mitochondrial protein import   总被引:60,自引:0,他引:60  
Most mitochondrial proteins are synthesized as precursor proteins on cytosolic polysomes and are subsequently imported into mitochondria. Many precursors carry amino-terminal presequences which contain information for their targeting to mitochondria. In several cases, targeting and sorting information is also contained in non-amino-terminal portions of the precursor protein. Nucleoside triphosphates are required to keep precursors in an import-competent (unfolded) conformation. The precursors bind to specific receptor proteins on the mitochondrial surface and interact with a general insertion protein (GIP) in the outer membrane. The initial interaction of the precursor with the inner membrane requires the mitochondrial membrane potential (delta psi) and occurs at contact sites between outer and inner membranes. Completion of translocation into the inner membrane or matrix is independent of delta psi. The presequences are cleaved off by the processing peptidase in the mitochondrial matrix. In several cases, a second proteolytic processing event is performed in either the matrix or in the intermembrane space. Other modifications can occur such as the addition of prosthetic groups (e.g., heme or Fe/S clusters). Some precursors of proteins of the intermembrane space or the outer surface of the inner membrane are retranslocated from the matrix space across the inner membrane to their functional destination ('conservative sorting'). Finally, many proteins are assembled in multi-subunit complexes. Exceptions to this general import pathway are known. Precursors of outer membrane proteins are transported directly into the outer membrane in a receptor-dependent manner. The precursor of cytochrome c is directly translocated across the outer membrane and thereby reaches the intermembrane space. In addition to the general sequence of events which occurs during mitochondrial protein import, current research focuses on the molecules themselves that are involved in these processes.  相似文献   

12.
13.
The import of proteins into mitochondria occurs in several steps. At least three of these steps require ATP and involve molecular chaperones. This energy requirement has served as a useful tool for elucidating the import pathways into the four mitochondrial compartments.  相似文献   

14.
The peroxisomal targeting signal type1 (PTS1) receptor Pex5 is required for the peroxisomal targeting of most matrix proteins. Pex5 recognises target proteins in the cytosol and directs them to the peroxisomal membrane where cargo is released into the matrix, and the receptor shuttles back to the cytosol. Recently, it has become evident that the membrane-bound Pex5 can be modified by mono- and polyubiquitination. This review summarises recent results on Pex5 ubiquitination and on the role of the AAA peroxins Pex1 and Pex6 as dislocases required for the release of Pex5 from the membrane to the cytosol where the receptor is either degraded by proteasomes or made available for another round of protein import into peroxisomes.  相似文献   

15.
16.
Transport of cytoplasmically synthesized precursor proteins into chloroplasts, like the protein transport systems of mitochondria and the endoplasmic reticulum, appears to require the action of molecular chaperones. These molecules are likely to be the sites of the ATP hydrolysis required for precursor proteins to bind to and be translocated across the two membranes of the chloroplast envelope. Over the past decade, several different chaperones have been identified, based mainly on their association with precursor proteins and/or components of the chloroplast import complex, as putative factors mediating chloroplast protein import. These factors include cytoplasmic, chloroplast envelope-associated and stromal members of the Hsp70 family of chaperones, as well as stromal Hsp100 and Hsp60 chaperones and a cytoplasmic 14-3-3 protein. While many of the findings regarding the action of chaperones during chloroplast protein import parallel those seen for mitochondrial and endoplasmic reticulum protein transport, the chloroplast import system also has unique aspects, including its hypothesized use of an Hsp100 chaperone to drive translocation into the organelle interior. Many questions concerning the specific functions of chaperones during protein import into chloroplasts still remain that future studies, both biochemical and genetic, will need to address.  相似文献   

17.
A dynamic model of the mitochondrial protein import machinery.   总被引:14,自引:0,他引:14  
  相似文献   

18.
19.
20.
Reconstitution of a chloroplast protein import channel.   总被引:17,自引:0,他引:17       下载免费PDF全文
S C Hinnah  K Hill  R Wagner  T Schlicher    J Soll 《The EMBO journal》1997,16(24):7351-7360
The chloroplastic outer envelope protein OEP75 with a molecular weight of 75 kDa probably forms the central pore of the protein import machinery of the outer chloroplastic membrane. Patch-clamp analysis shows that heterologously expressed, purified and reconstituted OEP75 constitutes a voltage-gated ion channel with a unit conductance of Lambda = 145pS. Activation of the OEP75 channel in vitro is completely dependent on the magnitude and direction of the voltage gradient. Therefore, movements of protein charges of parts of OEP75 in the membrane electric field are required either for pore formation or its opening. In the presence of precursor protein from only one side of the bilayer, strong flickering and partial closing of the channel was observed, indicating a specific interaction of the precursor with OEP75. The comparatively low ionic conductance of OEP75 is compatible with a rather narrow aqueous pore (dporeapproximately equal to 8-9 A). Provided that protein and ion translocation occur through the same pore, this implies that the environment of the polypeptide during the transit is mainly hydrophilic and that protein translocation requires almost complete unfolding of the precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号