首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Toxigenic Vibrio cholerae, rarely isolated from the aquatic environment between cholera epidemics, can be detected in what is now understood to be a dormant stage, i.e., viable but nonculturable when standard bacteriological methods are used. In the research reported here, biofilms have proved to be a source of culturable V. cholerae, even in nonepidemic periods. Biweekly environmental surveillance for V. cholerae was carried out in Mathbaria, an area of cholera endemicity adjacent to the Bay of Bengal, with the focus on V. cholerae O1 and O139 Bengal. A total of 297 samples of water, phytoplankton, and zooplankton were collected between March and December 2004, yielding eight V. cholerae O1 and four O139 Bengal isolates. A combination of culture methods, multiplex-PCR, and direct fluorescent antibody (DFA) counting revealed the Mathbaria aquatic environment to be a reservoir for V. cholerae O1 and O139 Bengal. DFA results showed significant clumping of the bacteria during the interepidemic period for cholera, and the fluorescent micrographs revealed large numbers of V. cholerae O1 in thin films of exopolysaccharides (biofilm). A similar clumping of V. cholerae O1 was also observed in samples collected from Matlab, Bangladesh, where cholera also is endemic. Thus, the results of the study provided in situ evidence for V. cholerae O1 and O139 in the aquatic environment, predominantly as viable but nonculturable cells and culturable cells in biofilm consortia. The biofilm community is concluded to be an additional reservoir of cholera bacteria in the aquatic environment between seasonal epidemics of cholera in Bangladesh.  相似文献   

2.
The occurrence of outbreaks of cholera in Africa in 1970 and in Latin America in 1991, mainly in coastal communities, and the appearance of the new serotype Vibrio cholerae O139 in India and subsequently in Bangladesh have stimulated efforts to understand environmental factors influencing the growth and geographic distribution of epidemic Vibrio cholerae serotypes. Because of the severity of recent epidemics, cholera is now being considered by some infectious disease investigators as a “reemerging” disease, prompting new work on the ecology of vibrios. Epidemiological and ecological surveillance for cholera has been under way in four rural, geographically separated locations in Bangladesh for the past 4 years, during which both clinical and environmental samples were collected at biweekly intervals. The clinical epidemiology portion of the research has been published (Sack et al., J. Infect. Dis. 187:96-101, 2003). The results of environmental sampling and analysis of the environmental and clinical data have revealed significant correlations of water temperature, water depth, rainfall, conductivity, and copepod counts with the occurrence of cholera toxin-producing bacteria (presumably V. cholerae). The lag periods between increases or decreases in units of factors, such as temperature and salinity, and occurrence of cholera correlate with biological parameters, e.g., plankton population blooms. The new information on the ecology of V. cholerae is proving useful in developing environmental models for the prediction of cholera epidemics.  相似文献   

3.

Background

Vibrio cholerae infections cluster in households. This study''s objective was to quantify the relative contribution of direct, within-household exposure (for example, via contamination of household food, water, or surfaces) to endemic cholera transmission. Quantifying the relative contribution of direct exposure is important for planning effective prevention and control measures.

Methodology/Principal Findings

Symptom histories and multiple blood and fecal specimens were prospectively collected from household members of hospital-ascertained cholera cases in Bangladesh from 2001–2006. We estimated the probabilities of cholera transmission through 1) direct exposure within the household and 2) contact with community-based sources of infection. The natural history of cholera infection and covariate effects on transmission were considered. Significant direct transmission (p-value<0.0001) occurred among 1414 members of 364 households. Fecal shedding of O1 El Tor Ogawa was associated with a 4.9% (95% confidence interval: 0.9%–22.8%) risk of infection among household contacts through direct exposure during an 11-day infectious period (mean length). The estimated 11-day risk of O1 El Tor Ogawa infection through exposure to community-based sources was 2.5% (0.8%–8.0%). The corresponding estimated risks for O1 El Tor Inaba and O139 infection were 3.7% (0.7%–16.6%) and 8.2% (2.1%–27.1%) through direct exposure, and 3.4% (1.7%–6.7%) and 2.0% (0.5%–7.3%) through community-based exposure. Children under 5 years-old were at elevated risk of infection. Limitations of the study may have led to an underestimation of the true risk of cholera infection. For instance, available covariate data may have incompletely characterized levels of pre-existing immunity to cholera infection. Transmission via direct exposure occurring outside of the household was not considered.

Conclusions

Direct exposure contributes substantially to endemic transmission of symptomatic cholera in an urban setting. We provide the first estimate of the transmissibility of endemic cholera within prospectively-followed members of households. The role of direct transmission must be considered when planning cholera control activities.  相似文献   

4.
The role of biofilm as a microenvironment of plankton-associated Vibrio cholerae was investigated using plexiglass as a bait. A total of 72 biofilm samples were tested using culture, direct fluorescent antibody (DFA) and molecular techniques following standard procedures. Culturable V. cholerae (smooth and rugose variants) were isolated from 33% of the samples. V. cholerae O1 were detected by FA technique throughout the year except April and June. All V. cholerae O1 isolates were positive for tcpA, ctxA and ace genes while V. cholerae non-O1, non-O139 isolates lacked these genes. V. cholerae O1 (both Inaba and Ogawa) strains had identical ribotype pattern (R1), but V. cholerae non-O1, non-O139 had different ribotype patterns. All V. cholerae O1 strains were resistant to vibrio-static compound (O/129). All V. cholerae O1 except one were resistant to trimethoprime-sulphamethoxazole, streptomycin, nalidixic acid and furazolidone but sensitive to ciprofloxacin, and tetracycline. This study indicates that plexiglass can act as a bait to form biofilm, a microenvironment that provides shelter for plankton containing V. cholerae in the aquatic environment of Bangladesh.  相似文献   

5.
6.
Toxigenic Vibrio cholerae, rarely isolated from the aquatic environment between cholera epidemics, can be detected in what is now understood to be a dormant stage, i.e., viable but nonculturable when standard bacteriological methods are used. In the research reported here, biofilms have proved to be a source of culturable V. cholerae, even in nonepidemic periods. Biweekly environmental surveillance for V. cholerae was carried out in Mathbaria, an area of cholera endemicity adjacent to the Bay of Bengal, with the focus on V. cholerae O1 and O139 Bengal. A total of 297 samples of water, phytoplankton, and zooplankton were collected between March and December 2004, yielding eight V. cholerae O1 and four O139 Bengal isolates. A combination of culture methods, multiplex-PCR, and direct fluorescent antibody (DFA) counting revealed the Mathbaria aquatic environment to be a reservoir for V. cholerae O1 and O139 Bengal. DFA results showed significant clumping of the bacteria during the interepidemic period for cholera, and the fluorescent micrographs revealed large numbers of V. cholerae O1 in thin films of exopolysaccharides (biofilm). A similar clumping of V. cholerae O1 was also observed in samples collected from Matlab, Bangladesh, where cholera also is endemic. Thus, the results of the study provided in situ evidence for V. cholerae O1 and O139 in the aquatic environment, predominantly as viable but nonculturable cells and culturable cells in biofilm consortia. The biofilm community is concluded to be an additional reservoir of cholera bacteria in the aquatic environment between seasonal epidemics of cholera in Bangladesh.  相似文献   

7.
Since Vibrio cholerae O139 first appeared in 1992, both O1 El Tor and O139 have been recognized as the epidemic serogroups, although their geographic distribution, endemicity, and reservoir are not fully understood. To address this lack of information, a study of the epidemiology and ecology of V. cholerae O1 and O139 was carried out in two coastal areas, Bakerganj and Mathbaria, Bangladesh, where cholera occurs seasonally. The results of a biweekly clinical study (January 2004 to May 2005), employing culture methods, and of an ecological study (monthly in Bakerganj and biweekly in Mathbaria from March 2004 to May 2005), employing direct and enrichment culture, colony blot hybridization, and direct fluorescent-antibody methods, showed that cholera is endemic in both Bakerganj and Mathbaria and that V. cholerae O1, O139, and non-O1/non-O139 are autochthonous to the aquatic environment. Although V. cholerae O1 and O139 were isolated from both areas, most noteworthy was the isolation of V. cholerae O139 in March, July, and September 2004 in Mathbaria, where seasonal cholera was clinically linked only to V. cholerae O1. In Mathbaria, V. cholerae O139 emerged as the sole cause of a significant outbreak of cholera in March 2005. V. cholerae O1 reemerged clinically in April 2005 and established dominance over V. cholerae O139, continuing to cause cholera in Mathbaria. In conclusion, the epidemic potential and coastal aquatic reservoir for V. cholerae O139 have been demonstrated. Based on the results of this study, the coastal ecosystem of the Bay of Bengal is concluded to be a significant reservoir for the epidemic serogroups of V. cholerae.  相似文献   

8.
The diversity of toxigenic V. cholerae O1 in the aquatic environment of Bangladesh is not known. A total of 18 environmental and 18 clinical strains of toxigenic V. cholerae O1 were isolated simultaneously from four different geographical areas and tested for variation by the pulsed-field gel electrophoresis method. Environmental strains showed diversified profiles and one of the profiles was common to some environmental strains and most clinical strains. It appears that one clone has an advantage over others to cause disease. These findings suggest that the study of the molecular ecology of V. cholerae O1 in relation to its environmental reservoir is important in identifying virulent strains that cause disease.  相似文献   

9.
10.
BackgroundAfter a multi-country Asian outbreak of cholera due to Vibrio cholerae serogroup O139 which started in 1992, it is rarely detected from any country in Asia and has not been detected from patients in Africa.Methodology/Principal findingsWe extracted surveillance data from the Dhaka and Matlab Hospitals of International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b) to review trends in isolation of Vibrio cholerae O139 in Bangladesh. Data from the Dhaka Hospital is a 2% sample of > 100,000 diarrhoeal patients treated annually. Data from the Matlab Hospital includes all diarrhoeal patients who hail from the villages included in the Matlab Health and Demographic Surveillance System. Vibrio cholerae O139 was first isolated in Dhaka in 1993 and had been isolated every year since then except for a gap between 2005 and 2008. An average of thirteen isolates was detected annually from the Dhaka Hospital during the last ten years, yielding an estimated 650 cases annually at this hospital. During the last ten years, cases due to serogroup O139 represented 0.47% of all cholera cases; the others being due to serogroup O1. No cases with serogroup O139 were identified at Matlab since 2006. Clinical signs and symptoms of cholera due to serogroup O139 were similar to cases due to serogroup O1 though more of the O139 cases were not dehydrated. Most isolates of O139 remained sensitive to tetracycline, ciprofloxacin, and azithromycin, but they became resistant to erythromycin starting in 2009.Conclusions/SignificanceCholera due to Vibrio cholerae serogroup O139 continues to cause typical cholera in Dhaka, Bangladesh.  相似文献   

11.
Currently, Bangladesh is experiencing an epidemic of acute watery diarrhea caused by Vibrio cholerae O139. Surface waters were collected and cultured for vibrious following enrichment. Twelve percent (11 of 92) of samples yielded V. cholerae O139, and all of them were positive for cholera toxin. The data suggest that V. cholerae O139 is easily culturable from surface water samples.  相似文献   

12.
The possibilities of the autochthonous existence of V. cholerae in open water reservoirs, depending on the combined effect of different biotic and abiotic factors are considered. The role of adaptive variability of V. cholerae O1, biovar eltor for its preservation in the environment is emphasized. The data on the duration of the V. cholerae O1 isolation from different environmental objects in some regions of Ukraine are presented.  相似文献   

13.
Previous laboratory experiments revealed that Vibrio cholerae A1552 biofilms secrete an antiprotozoal factor that prevents Rhynchomonas nasuta from growing and thus prevents grazing losses. The antiprotozoal factor is regulated by the quorum-sensing response regulator, HapR. Here, we investigate whether the antiprotozoal activity is ecologically relevant. Experiments were conducted in the field as well as under field-like conditions in the laboratory to assess the grazing resistance of V. cholerae A1552 and N16961 (natural frameshift mutation in hapR) biofilms to R. nasuta and Cafeteria roenbergensis. In laboratory experiments exposing the predators to V. cholerae grown in seawater containing high and low glucose concentrations, we determined that V. cholerae biofilms showed increased resistance towards grazing by both predators as glucose levels decreased. The relative resistance of the V. cholerae strains to the grazers under semi-field conditions was similar to that observed in situ. Therefore, the antipredator defense is environmentally relevant and not lost when biofilms are grown in an open system in the marine environment. The hapR mutant still exhibited some resistance to both predators and this suggests that V. cholerae may coordinate antipredator defenses by a combination of density-dependent regulation and environmental sensing to protect itself from predators in its natural habitat.  相似文献   

14.
Vibrio cholerae, an environmental organism, is a facultative human pathogen. Here, we report the virulence profiles, comprising 18 genetic markers, of 102 clinical and 692 environmental V. cholerae strains isolated in Bangladesh between March 2004 and January 2006, showing the variability of virulence determinants within the context of public health.  相似文献   

15.
The occurrence and distribution of Vibrio cholerae in sea water and plankton along the coast of Peru were studied from October 1997 to June 2000, and included the 1997-98 El Ni?o event. Samples were collected at four sites in coastal waters off Peru at monthly intervals. Of 178 samples collected and tested, V. cholerae O1 was cultured from 10 (5.6%) samples, and V. cholerae O1 was detected by direct fluorescent antibody assay in 26 out of 159 samples tested (16.4%). Based on the number of cholera cases reported in Peru from 1997 to 2000, a significant correlation was observed between cholera incidence and elevated sea surface temperature (SST) along the coast of Peru (P < 0.001). From the results of this study, coastal sea water and zooplankton are concluded to be a reservoir for V. cholerae in Peru. The climate-cholera relationship observed for the 1997-98 El Ni?o year suggests that an early warning system for cholera risk can be established for Peru and neighbouring Latin American countries.  相似文献   

16.
17.
A field trial to enumerate Vibrio cholerae O1 in aquatic environments in Bangladesh was conducted, comparing fluorescent-antibody direct viable count with culture detection by the most-probable-number index. Specificity of a monoclonal antibody prepared against the O1 antigen was assessed and incorporated into the fluorescence staining method. All pond and water samples yielded higher counts of viable V. cholerae O1 by fluorescent-antibody direct viable count than by the most-probable-number index. Fluorescence microscopy is a more sensitive detection system than culture methods because it allows the enumeration of both culturable and nonculturable cells and therefore provides more precise monitoring of microbiological water quality.  相似文献   

18.
Transmissible factors encoding production of lacunae (L factors) were demonstrated in a non-O1 Vibrio cholerae and a Vibrio sp. of recent environmental origin. Lacunae were produced in lawns of non-O1 V. cholerae indicator strains under the same assay conditions as those where lacunae were produced by the well characterized P fertility plasmid of V. cholerae O1 and the V fertility factor found in a non-cholera vibrio strain. The origin of the lacunae produced by strains harbouring the V and L factors was examined. No vibriocin or phage activity was found in culture supernates or in lacunae produced by the strains, suggesting that, as in the case of the P plasmid, the lacunae probably represent sites of active mating. Unlike the P plasmid, neither the Vn or L factor could be detected or isolated by conventional plasmid techniques.  相似文献   

19.
In Argentina, as in other countries of Latin America, cholera has occurred in an epidemic pattern. Vibrio cholerae O1 is native to the aquatic environment, and it occurs in both culturable and viable but nonculturable (VNC) forms, the latter during interepidemic periods. This is the first report of the presence of VNC V. cholerae O1 in the estuarine and marine waters of the Rio de la Plata and the Argentine shelf of the Atlantic Ocean, respectively. Employing immunofluorescence and PCR methods, we were able to detect reservoirs of V. cholerae O1 carrying the virulence-associated genes ctxA and tcpA. The VNC forms of V. cholerae O1 were identified in samples of water, phytoplankton, and zooplankton; the latter organisms were mainly the copepods Acartia tonsa, Diaptomus sp., Paracalanus crassirostris, and Paracalanus parvus. We found that under favorable conditions, the VNC form of V. cholerae can revert to the pathogenic, transmissible state. We concluded that V. cholerae O1 is a resident of Argentinean waters, as has been shown to be the case in other geographic regions of the world.  相似文献   

20.
Biochemical tests commonly used to screen for Vibrio cholerae in environmental samples were evaluated, and we found that a combination of alkaline peptone enrichment followed by streaking on thiosulfate citrate bile salts sucrose agar and testing for arginine dihydrolase activity and esculin hydrolysis was an effective rapid technique to screen for aquatic environmental V. cholerae. This technique provided 100% sensitivity and > or =70% specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号