首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Indwelling and temporary medical delivery devices (i.e. catheters) are increasingly used in hospital settings, providing clinicians with useful tools to administer nutrients, draw blood samples and deliver drugs. However, they can often put patients at risk for local or systemic infections, including bloodstream infections and endocarditis. Microorganisms readily adhere to the surfaces and colonize them by forming a slimy layer of biofilm. Bacteria growing in biofilms exhibit an increased antibiotic resistance in comparison with planktonic cells. Consequently the antibiotic treatment of these medical device-associated infections frequently fails. Detechment resulting in the formation of microemboli is a further biofilm related complication. Since infections often involve increased morbidity and morality, prolonged hospitalization and additional medical costs, various strategies to prevent biofilm formation on implanted medical devices have been developed over the last two decades. In this paper we review and discuss the most significant experimental approaches to inhibit bacterial adhesion and growth on these devices.  相似文献   

2.
大量研究报道生物被膜细菌对抗生素的耐药性是浮游菌的10–1 000倍,据报道细菌生物被膜是80%以上细菌感染的罪魁祸首,对医疗保健领域构成了严峻的挑战。植物提取物及其活性成分对细菌生物被膜有明显的抑制作用,包括减少生物被膜量、生物被膜活菌数以及清除已经成熟的生物被膜等。该文对这些有效的植物提取物及其活性成分进行了总结,并分析了其抗细菌生物被膜的作用机制。旨在为防治细菌生物被膜感染的植物类药物的开发提供参考。  相似文献   

3.
Bacterial biofilms are assemblages of bacterial cells and extracellular matrix that result in the creation of surface-associated macrocolony formation. Most bacteria are capable of forming biofilms under suitable conditions. Biofilm formation by pathogenic bacteria on medical implant devices has been linked to implant rejection in up to 10% of cases, due to biofilm-related secondary infections. In addition, biofilm formation has been implicated in both bacterial persistence and antibiotic resistance. In this study, a method has been developed for the discovery of small molecule inhibitors of biofilm formation in Vibrio cholerae, through the use of high-throughput epifluorescence microscopy imaging. Adaptation of a strategy for the growth of bacterial biofilms in wellplates, and the subsequent quantification of biofilm coverage within these wells, provides the first example of an image-based 384-well format system for the evaluation of biofilm inhibition in V. cholerae. Application of this method to the high-throughput screening of small molecule libraries has lead to the discovery of 29 biofilm lead structures, many of which eliminate biofilm formation without altering bacterial cell viability.  相似文献   

4.
Although the natural mode of bacterial growth in nature is as biofilm, almost all antimicrobial and immunological tests are routinely developed using planktonic inoculums. Bacterial biofilms protect the microbial community from external damage and promote the persistence of chronic infections. In this study, interactions between human macrophages and bacterial inoculums of planktonic and biofilm modes of growth have been explored using Escherichia coli (E. coli) K12. Human macrophages phagocytize planktonic E. coli more efficiently than bacteria grown in a biofilm. Moreover, they prefer to phagocytize planktonic bacteria. In this context, CD64 expression is involved. Our data indicate that bacteria with “a biofilm background” avoid phagocytosis by naïve macrophages, which could create a favorable environment for chronic infection. Our findings were corroborated in a clinical O25b-ST131 ESBL-producer E. coli isolate, which caused urinary tract infections.  相似文献   

5.
Endophthalmitis is an important disease of the eye that is most frequently caused by postoperative and post-traumatic introduction of bacteria into the posterior segment of the eye. In the case of severe infections, visual acuity is greatly damaged or completely lost. Much work has focused on the ability of planktonic bacteria to cause infection and ocular damage while little work has focused on chronic infections in endophthalmitis mediated by the formation of bacterial biofilms on the surface of the lens. This review focuses on the interaction of Staphylococcus aureus and Staphylococcus epidermidis lens-associated biofilms in endophthalmitis. Additionally, this review highlights some relevant biofilm-immune system interactions and outlines a new in vivo mouse model to explore biofilm-related infections in endophthalmitis.  相似文献   

6.
史巧  王红宁  刘立 《微生物学通报》2008,35(10):1633-1637
细菌生物膜是一种包裹于细胞外多聚物基质中不可逆的黏附于非生物或生物表面的微生物细胞菌落.生物膜状态下的细菌相对其浮游状态具有显著增强的耐药性,对人及动物细菌性感染具有重要研究价值.然而尽管动物细菌耐药性被广泛报道,却很少涉及细菌生物膜与其之间的相关性,本文综述了细菌生物膜的耐药机制并探讨了细菌生物膜与动物源性细菌耐药性的关系,可作为研究细菌耐药性及控制动物产品安全的参考.  相似文献   

7.
As all bacteria studied to date, the gastric pathogen Helicobacter pylori has an alternate lifestyle as a biofilm. H. pylori forms biofilms on glass surfaces at the air-liquid interface in stationary or shaking batch cultures. By light microscopy, we have observed attachment of individual, spiral H. pylori to glass surfaces, followed by division to form microcolonies, merging of individual microcolonies, and growth in the third dimension. Scanning electron micrographs showed H. pylori arranged in a matrix on the glass with channels for nutrient flow, typical of other bacterial biofilms. To understand the importance of biofilms to the H. pylori life cycle, we tested the effect of mucin on biofilm formation. Our results showed that 10% mucin greatly increased the number of planktonic H. pylori while not affecting biofilm bacteria, resulting in a decline in percent adherence to the glass. This suggests that in the mucus-rich stomach, H. pylori planktonic growth is favored over biofilm formation. We also investigated the effect of specific mutations in several genes, including the quorum-sensing gene, luxS, and the cagE type IV secretion gene. Both of these mutants were found to form biofilms approximately twofold more efficiently than the wild type in both assays. These results indicate the relative importance of these genes to the production of biofilms by H. pylori and the selective enhancement of planktonic growth in the presence of gastric mucin.  相似文献   

8.
细菌生物膜研究技术   总被引:22,自引:0,他引:22  
细菌生物膜是细菌生长过程中为适应生存环境而在固体表面上生长的一种与游走态细胞相对应的存在形式。只要条件允许,绝大多数细菌都可以形成生物膜。一旦形成了生物膜细菌就具有极强的耐药性,在医疗、食品、工业、军事等诸多领域给人类社会带来了严重的危害,造成巨大的经济损失。因此,细菌生物膜已成为全球关注的重大难题,也是目前科学界研究的前沿和热点。本文结合细菌生物膜研究技术的最新进展,重点介绍了几种常用生物膜发生装置及检测量化技术,并对其原理及优缺点进行了讨论。  相似文献   

9.
It is well accepted that bacterial pathogens growing in a biofilm are recalcitrant to the action of most antibiotics and are resistant to the innate immune system. New treatment modalities are greatly warranted to effectively eradicate these infections. However, bacteria growing in a biofilm are metabolically unique in comparison to the bacteria growing in a planktonic state. Unfortunately, most antibiotics have been developed to inhibit the growth of bacteria in a planktonic mode of growth. This review focuses on the metabolism and physiology of biofilm growth with special emphasis on staphylococci. Future treatment options should include targeting unique metabolic niches found within bacterial biofilms in addition to the enzymes or compounds that inhibit biofilm accumulation molecules and/or interact with quorum sensing and intercellular bacterial communication.  相似文献   

10.
Chronic infections resulting from biofilm formation are difficult to eradicate with current antimicrobial agents and consequently new therapies are needed. This work demonstrates that the carbon monoxide-releasing molecule CORM-2, previously shown to kill planktonic bacteria, also attenuates surface-associated growth of the gram-negative pathogen Pseudomonas aeruginosa by both preventing biofilm maturation and killing bacteria within the established biofilm. CORM-2 treatment has an additive effect when combined with tobramycin, a drug commonly used to treat P. aeruginosa lung infections. CORM-2 inhibited biofilm formation and planktonic growth of the majority of clinical P. aeruginosa isolates tested, for both mucoid and non-mucoid strains. While CORM-2 treatment increased the production of reactive oxygen species by P. aeruginosa biofilms, this increase did not correlate with bacterial death. These data demonstrate that CO-RMs possess potential novel therapeutic properties against a subset of P. aeruginosa biofilm related infections.  相似文献   

11.
Staphylococcus aureus and Staphylococcus epidermidis are a frequent cause of biofilm-associated infections that are a tremendous burden on our healthcare system. Staphylococcal biofilms exhibit extraordinary resistance to antimicrobial killing, limiting the efficacy of antibiotic therapy, and surgical intervention is often required to remove infected tissues or implanted devices. Recent work has provided new insight into the molecular basis of biofilm development in these opportunistic pathogens. Extracellular bacterial products, environmental conditions, and polymicrobial interactions have all been shown to influence profoundly the ability of these bacteria to colonize and disperse from clinically relevant surfaces. We review new developments in staphylococcal biofilm disassembly and set them in the context of potential strategies to control biofilm infections.  相似文献   

12.
Bacteria exist, in most environments, as complex, organised communities of sessile cells embedded within a matrix of self-produced, hydrated extracellular polymeric substances known as biofilms. Bacterial biofilms represent a ubiquitous and predominant cause of both chronic infections and infections associated with the use of indwelling medical devices such as catheters and prostheses. Such infections typically exhibit significantly enhanced tolerance to antimicrobial, biocidal and immunological challenge. This renders them difficult, sometimes impossible, to treat using conventional chemotherapeutic agents. Effective alternative approaches for prevention and eradication of biofilm associated chronic and device-associated infections are therefore urgently required. Atmospheric pressure non-thermal plasmas are gaining increasing attention as a potential approach for the eradication and control of bacterial infection and contamination. To date, however, the majority of studies have been conducted with reference to planktonic bacteria and rather less attention has been directed towards bacteria in the biofilm mode of growth. In this study, the activity of a kilohertz-driven atmospheric pressure non-thermal plasma jet, operated in a helium oxygen mixture, against Pseudomonas aeruginosa in vitro biofilms was evaluated. Pseudomonas aeruginosa biofilms exhibit marked susceptibility to exposure of the plasma jet effluent, following even relatively short (~10's s) exposure times. Manipulation of plasma operating conditions, for example, plasma operating frequency, had a significant effect on the bacterial inactivation rate. Survival curves exhibit a rapid decline in the number of surviving cells in the first 60 seconds followed by slower rate of cell number reduction. Excellent anti-biofilm activity of the plasma jet was also demonstrated by both confocal scanning laser microscopy and metabolism of the tetrazolium salt, XTT, a measure of bactericidal activity.  相似文献   

13.
Bacterial biofilms have been observed and reported on food and food-processing surfaces and can contribute to increased risks for product quality and food safety. The colonization of fruit and vegetables by pectynolitic bacteria like Pseudonomas fluorescens attributable to conditions such as soft rot, can also manifest as biofilms. A developed biofilm structure can provide a protective environment for pathogens such as Listeria monocytogenes reducing the effectiveness of sanitisers and other inhibitory agents. Understanding the colonization of bacteria on leaf surfaces is essential to the development of a better understanding of the leaf ecology of vegetable products. Studies of microbial colonization of leaf surfaces have been conducted using SEM and more recently using confocal microsocpy techniques. In the current study, a Leica TCS NT laser scanning confocal microscope was used to investigate biofilm formation using vital fluorescence staining on intact vegetable leaves. Reflection contrast and fluorescence three-dimensional imaging successfully delineated bacterial and biofilm morphology without disturbing the bacterial or leaf surface structure. The results demonstrate the presence and development of biofilm on the surface of lettuce. The biofilms appeared to originate on the cuticle in distinct micro-environments such as in the natural depression of the stomata, or in the intercellular junction. Bacteria also adhered to and developed biofilm colonies within an hour of contact and with clean stainless steel surfaces. Our study investigates the progression of biofilm formation from leaf colonization, and will assist in characterising the critical mechanisms of plant/host interaction and facilitate the development of improved preservation, sanitising and packaging strategies for minimally processed vegetable products.  相似文献   

14.
15.
Bacterial biofilm formation on contact lenses (CLs), and CL storage cases may be a risk factor for CL-associated corneal infection and may explain the persistence of organisms in CL storage cases. This study evaluated biofilm formation on, and microbial contamination of, CLs and CL storage cases from patients with microbial keratitis. Contact lenses and CL storage cases from 20 wearers with microbial keratitis were sampled microbiologically and visualized using scanning electron microscopy (SEM). Culture results from the cornea were also noted. Bacterial biofilm was present more frequently ( P < 0·05) on CL storage case surfaces (17/20) compared with CL surfaces (11/20) and biofilm density was significantly greater on case surfaces ( P < 0·05). There was no association between poor compliance and microbial contamination of the CL storage case, nor between poor compliance and biofilm formation or density on the CL or CL storage case. Biofilm formation occurred equally frequently with hydrogen peroxide and chlorine release care systems. Microbial keratitis in CL wearers is frequently associated with bacterial biofilm in the CL storage case. Despite the use of current CL disinfection systems, the CL storage case is a favourable environment for proliferation of certain organisms. Biofilm on CLs may prolong the retention time of organisms at the ocular surface and increase their potential pathogenicity.  相似文献   

16.
Legionella pneumophila persists for a long time in aquatic habitats, where the bacteria associate with biofilms and replicate within protozoan predators. While L. pneumophila serves as a paradigm for intracellular growth within protozoa, it is less clear whether the bacteria form or replicate within biofilms in the absence of protozoa. In this study, we analyzed surface adherence of and biofilm formation by L. pneumophila in a rich medium that supported axenic replication. Biofilm formation by the virulent L. pneumophila strain JR32 and by clinical and environmental isolates was analyzed by confocal microscopy and crystal violet staining. Strain JR32 formed biofilms on glass surfaces and upright polystyrene wells, as well as on pins of "inverse" microtiter plates, indicating that biofilm formation was not simply due to sedimentation of the bacteria. Biofilm formation by an L. pneumophila fliA mutant lacking the alternative sigma factor sigma(28) was reduced, which demonstrated that bacterial factors are required. Accumulation of biomass coincided with an increase in the optical density at 600 nm and ceased when the bacteria reached the stationary growth phase. L. pneumophila neither grew nor formed biofilms in the inverse system if the medium was exchanged twice a day. However, after addition of Acanthamoeba castellanii, the bacteria proliferated and adhered to surfaces. Sessile (surface-attached) and planktonic (free-swimming) L. pneumophila expressed beta-galactosidase activity to similar extents, and therefore, the observed lack of proliferation of surface-attached bacteria was not due to impaired protein synthesis or metabolic activity. Cocultivation of green fluorescent protein (GFP)- and DsRed-labeled L. pneumophila led to randomly interspersed cells on the substratum and in aggregates, and no sizeable patches of clonally growing bacteria were observed. Our findings indicate that biofilm formation by L. pneumophila in a rich medium is due to growth of planktonic bacteria rather than to growth of sessile bacteria. In agreement with this conclusion, GFP-labeled L. pneumophila initially adhered in a continuous-flow chamber system but detached over time; the detachment correlated with the flow rate, and there was no accumulation of biomass. Under these conditions, L. pneumophila persisted in biofilms formed by Empedobacter breve or Microbacterium sp. but not in biofilms formed by Klebsiella pneumoniae or other environmental bacteria, suggesting that specific interactions between the bacteria modulate adherence.  相似文献   

17.
Biofilms are complex bacterial assemblages with a defined three-dimensional architecture, attached to solid surfaces, and surrounded by a self-produced matrix generally composed of exopolysaccharides, proteins, lipids and extracellular DNA. Biofilm formation has evolved as an adaptive strategy of bacteria to cope with harsh environmental conditions as well as to establish antagonistic or beneficial interactions with their host. Plant-associated bacteria attach and form biofilms on different tissues including leaves, stems,vasculature, seeds and roots. In this review, we examine the formation of biofilms from the plant-associated bacterial perspective and detail the recently-described mechanisms of genetic regulation used by these organisms to orchestrate biofilm formation on plant surfaces. In addition, we describe plant host signals that bacterial pathogens recognize to activate the transition from a planktonic lifestyle to multicellular behavior.  相似文献   

18.
Bacterial biofilm development is conditioned by complex processes involving bacterial attachment to surfaces, growth, mobility, and exoproduct production. The marine bacterium Pseudoalteromonas sp. strain D41 is able to attach strongly onto a wide variety of substrates, which promotes subsequent biofilm development. Study of the outer‐membrane and total soluble proteomes showed ten spots with significant intensity variations when this bacterium was grown in biofilm compared to planktonic cultures. MS/MS de novo sequencing analysis allowed the identification of four outer‐membrane proteins of particular interest since they were strongly induced in biofilms. These proteins are homologous to a TonB‐dependent receptor (TBDR), to the OmpW and OmpA porins, and to a type IV pilus biogenesis protein (PilF). Gene expression assays by quantitative RT‐PCR showed that the four corresponding genes were upregulated during biofilm development on hydrophobic and hydrophilic surfaces. The Pseudomonas aeruginosa mutants unable to produce any of the OmpW, OmpA, and PilF homologues yielded biofilms with lower biovolumes and altered architectures, confirming the involvement of these proteins in the biofilm formation process. Our results indicate that Pseudoalteromonas sp. D41 shares biofilm formation mechanisms with human pathogenic bacteria, but also relies on TBDR, which might be more specific to the marine environment.  相似文献   

19.
Bacteria are microscopic, single-celled organisms known for their ability to adapt to their environment. In response to stressful environmental conditions or in the presence of a contact surface, they commonly form multicellular aggregates called biofilms. Biofilms form on various abiotic or biotic surfaces through a dynamic stepwise process involving adhesion, growth, and extracellular matrix production. Biofilms develop on tissues as well as on implanted devices during infections, providing the bacteria with a mechanism for survival under harsh conditions including targeting by the immune system and antimicrobial therapy. Like pathogenic bacteria, members of the human microbiota can form biofilms. Biofilms formed by enteric bacteria contribute to several human diseases including autoimmune diseases and cancer. However, until recently the interactions of immune cells with biofilms had been mostly uncharacterized. Here, we will discuss how components of the enteric biofilm produced in vivo, specifically amyloid curli and extracellular DNA, could be interacting with the host's immune system causing an unpredicted immune response.  相似文献   

20.
Bacterial species are found primarily as residents of complex surface-associated communities, known as biofilms. Although these structures prevail in nature, bacteria still exist in planktonic lifestyle and differ from those in morphology, physiology, and metabolism. This study aimed to investigate the influence of physiological states of Pseudomonas aeruginosa and Escherichia coli in cell-to-cell interactions. Filtered supernatants obtained under planktonic and biofilm cultures of each single species were supplemented with tryptic soy broth (TSB) and used as the growth media (conditioned media) to planktonic and sessile growth of both single- and two-species cultures. Planktonic bacterial growth was examined through OD640 measurement. One-day-old biofilms were evaluated in terms of biofilm biomass (CV), respiratory activity (XTT), and CFU number. Conditioned media obtained either in biofilm or in planktonic mode of life triggered a synergistic effect on planktonic growth, mainly for E. coli single cultures growing in P. aeruginosa supernatants. Biofilms grown in the presence of P. aeruginosa biofilms-derived metabolites presented less mass and activity. These events highlight that, when developed in biofilm, P. aeruginosa release signals or metabolites able to prejudice single and binary biofilm growth of others species and of their own species. However, products released by their planktonic counterparts did not impair biofilm growth or activity. E. coli, living as planktonic or sessile cultures, released signals and metabolites or removed un-beneficial compounds which promoted the growth and activity of all the species. Our findings revealed that inter and intraspecies behaviors depend on the involved bacteria and their adopted mode of life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号