首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Bioenergetics of the Archaea   总被引:4,自引:1,他引:3       下载免费PDF全文
In the late 1970s, on the basis of rRNA phylogeny, Archaea (archaebacteria) was identified as a distinct domain of life besides Bacteria (eubacteria) and Eucarya. Though forming a separate domain, archaea display an enormous diversity of lifestyles and metabolic capabilities. Many archaeal species are adapted to extreme environments with respect to salinity, temperatures around the boiling point of water, and/or extremely alkaline or acidic pH. This has posed the challenge of studying the molecular and mechanistic bases on which these organisms can cope with such adverse conditions. This review considers our cumulative knowledge on archaeal mechanisms of primary energy conservation, in relationship to those of bacteria and eucarya. Although the universal principle of chemiosmotic energy conservation also holds for Archaea, distinct features have been discovered with respect to novel ion-transducing, membrane-residing protein complexes and the use of novel cofactors in bioenergetics of methanogenesis. From aerobically respiring archaea, unusual electron-transporting supercomplexes could be isolated and functionally resolved, and a proposal on the organization of archaeal electron transport chains has been presented. The unique functions of archaeal rhodopsins as sensory systems and as proton or chloride pumps have been elucidated on the basis of recent structural information on the atomic scale. Whereas components of methanogenesis and of phototrophic energy transduction in halobacteria appear to be unique to archaea, respiratory complexes and the ATP synthase exhibit some chimeric features with respect to their evolutionary origin. Nevertheless, archaeal ATP synthases are to be considered distinct members of this family of secondary energy transducers. A major challenge to future investigations is the development of archaeal genetic transformation systems, in order to gain access to the regulation of bioenergetic systems and to overproducers of archaeal membrane proteins as a prerequisite for their crystallization.  相似文献   

2.
《BBA》2014,1837(6):940-952
Archaea live under different environmental conditions, such as high salinity, extreme pHs and cold or hot temperatures. How energy is conserved under such harsh environmental conditions is a major question in cellular bioenergetics of archaea. The key enzymes in energy conservation are the archaeal A1AO ATP synthases, a class of ATP synthases distinct from the F1FO ATP synthase ATP synthase found in bacteria, mitochondria and chloroplasts and the V1VO ATPases of eukaryotes. A1AO ATP synthases have distinct structural features such as a collar-like structure, an extended central stalk, and two peripheral stalks possibly stabilizing the A1AO ATP synthase during rotation in ATP synthesis/hydrolysis at high temperatures as well as to provide the storage of transient elastic energy during ion-pumping and ATP synthesis/-hydrolysis. High resolution structures of individual subunits and subcomplexes have been obtained in recent years that shed new light on the function and mechanism of this unique class of ATP synthases. An outstanding feature of archaeal A1AO ATP synthases is their diversity in size of rotor subunits and the coupling ion used for ATP synthesis with H+, Na+ or even H+ and Na+ using enzymes. The evolution of the H+ binding site to a Na+ binding site and its implications for the energy metabolism and physiology of the cell are discussed.  相似文献   

3.
Archaea are prokaryotes that evolved in parallel with bacteria. Since the discovery of the distinct status of the Archaea, extensive physiological and biochemical research has been conducted to elucidate the molecular basis of their remarkable lifestyle and their unique biology. Here, we discuss how in-depth comparative genomics has been used to improve the annotation of archaeal genomes. Combined with experimental verification, bioinformatic analysis contributes to the ongoing discovery of novel metabolic conversions and control mechanisms, and as such to a better understanding of the intriguing biology of the Archaea.  相似文献   

4.
An enigmatical association of two Archaea The obligate anaerobic hyperthermophilic Nanoarchaeum equitans and Ignicoccus hospitalis represent a unique, purely archaeal biocoenosis which is mandatory for N. equitans. Its strong dependence on I. hospitalis is affirmed by the fact that its lipids and amino acids are obtained exclusively from the host. The Crenarchaeon I. hospitalis is characterized by energy production via reduction of elemental sulfur with molecular hydrogen and a novel CO2‐fixation pathway. It possesses a unique cell envelope for Archaea with an inner and an outer membrane, forming two cell compartments, the cytoplasm and a huge intermembrane compartment. By immuno‐analyses we demonstrated that the ATP synthase and H2:sulfur oxidoreductase complexes of I. hospitalis are located in the outer membrane. Thus I. hospitalis is the first Prokaryote with an energized outer membrane, ATP synthesis outside the cytoplasm, and spatial separation of energy conservation from information processing and protein biosynthesis. This raises many questions on the function and characterization of the two membranes, the two cell compartments, and a possible ATP transfer to N. equitans.  相似文献   

5.
Environmental surveys indicate that the Archaea are diverse and abundant not only in extreme environments, but also in soil, oceans and freshwater, where they may fulfil a key role in the biogeochemical cycles of the planet. Archaea display unique capacities, such as methanogenesis and survival at temperatures higher than 90 degrees C, that make them crucial for understanding the nature of the biota of early Earth. Molecular, genomics and phylogenetics data strengthen Woese's definition of Archaea as a third domain of life in addition to Bacteria and Eukarya. Phylogenomics analyses of the components of different molecular systems are highlighting a core of mainly vertically inherited genes in Archaea. This allows recovering a globally well-resolved picture of archaeal evolution, as opposed to what is observed for Bacteria and Eukarya. This may be due to the fact that no rapid divergence occurred at the emergence of present-day archaeal lineages. This phylogeny supports a hyperthermophilic and non-methanogenic ancestor to present-day archaeal lineages, and a profound divergence between two major phyla, the Crenarchaeota and the Euryarchaeota, that may not have an equivalent in the other two domains of life. Nanoarchaea may not represent a third and ancestral archaeal phylum, but a fast-evolving euryarchaeal lineage. Methanogenesis seems to have appeared only once and early in the evolution of Euryarchaeota. Filling up this picture of archaeal evolution by adding presently uncultivated species, and placing it back in geological time remain two essential goals for the future.  相似文献   

6.
Protein translocation begins with the efficient targeting of secreted and membrane proteins to complexes embedded within the membrane. In Eukarya and Bacteria, this is achieved through the interaction of the signal recognition particle (SRP) with the nascent polypeptide chain. In Archaea, homologs of eukaryal and bacterial SRP-mediated translocation pathway components have been identified. Biochemical analysis has revealed that although the archaeal system incorporates various facets of the eukaryal and bacterial targeting systems, numerous aspects of the archaeal system are unique to this domain of life. Moreover, it is becoming increasingly clear that elucidation of the archaeal SRP pathway will provide answers to basic questions about protein targeting that cannot be obtained from examination of eukaryal or bacterial models. In this review, recent data regarding the molecular composition, functional behavior and evolutionary significance of the archaeal signal recognition particle pathway are discussed.  相似文献   

7.
瘤胃甲烷菌及甲烷生成的调控   总被引:18,自引:0,他引:18  
甲烷菌属于古细菌 ,参与有机物的厌氧降解 ,生成甲烷。反刍动物瘤胃内甲烷的生成损耗 2 %~ 12 %的饲料能量 ,并且通过嗳气排入大气。甲烷不仅是温室气体之一 ,而且还会破坏大气臭氧层。每年全球反刍动物排放大量的甲烷 ,减少瘤胃内甲烷的生成对提高饲料能量利用率和改善环境具有重要意义。近年来 ,有关瘤胃甲烷菌及甲烷生成调控的报道日益增多。概述甲烷菌的特性以及瘤胃内甲烷生成的途径 ,综述甲烷生成的调控手段 ,主要包括去原虫、日粮配合、添加电子受体、增加乙酸生成菌等方法  相似文献   

8.
氢营养型产甲烷代谢途径研究进展   总被引:1,自引:0,他引:1  
冷欢  杨清  黄钢锋  白丽萍 《微生物学报》2020,60(10):2136-2160
产甲烷古菌是一类极端厌氧的古菌域微生物,可以利用CO_2、甲醇、乙酸等简单化合物产甲烷并获得能量。目前能够培养的氢营养型(CO_2/H_2)产甲烷古菌的种类较多,而且在三类产甲烷代谢类型中,氢营养型产甲烷途径的产能效率最高,并具有多种模式的特殊能量利用系统。近年来,随着质谱、光谱和晶体技术的发展与运用,人们对产甲烷代谢途径的研究进一步深入,尤其是对氢营养型产甲烷途径的生化机制有了新的认识,揭示了产甲烷古菌在能量极限条件下独特、高效的能量利用模式。本文从能量储存、代谢途径、蛋白功能与催化机制等方面概述产甲烷古菌利用CO_2/H_2产甲烷的详细过程,并对产甲烷古菌代谢途径的研究方向与技术发展进行展望。  相似文献   

9.
Archaeal DNA replication and repair   总被引:1,自引:0,他引:1  
Since the first archaeal genome was sequenced, much attention has been focused on the study of these unique microorganisms. We have learnt that although archaeal DNA metabolic processes (replication, recombination and repair) are more similar to the metabolic processes of Eukarya than those of Bacteria, Archaea are not simply 'mini Eukarya'. They are, in fact, a mosaic of the eukaryal and bacterial systems that also possess archaeal-specific features. Recent biochemical and structural studies of the proteins that participate in archaeal DNA replication and repair have increased our understanding of these processes.  相似文献   

10.
Genomic studies of uncultivated archaea   总被引:3,自引:0,他引:3  
Archaea represent a considerable fraction of the prokaryotic world in marine and terrestrial ecosystems, indicating that organisms from this domain might have a large impact on global energy cycles. However, many novel archaeal lineages that have been detected by molecular phylogenetic approaches have remained elusive because no laboratory-cultivated strains are available. Environmental genomic analyses have recently provided clues about the potential metabolic strategies of several of the uncultivated and abundant archaeal species, including non-thermophilic terrestrial and marine crenarchaeota and methanotrophic euryarchaeota. These initial studies of natural archaeal populations also revealed an unexpected degree of genomic variation that indicates considerable heterogeneity among archaeal strains. Here, we review genomic studies of uncultivated archaea within a framework of the phylogenetic diversity and ecological distribution of this domain.  相似文献   

11.
古生菌是一类区别于真细菌和真核生物的第三域生命形式 ,转录是生物体遗传信息传递系统中的一个中心环节。近年来研究结果表明 ,古生菌的转录系统具有真细菌和真核生物的融合特征 :古生菌的基本转录装置包括RNA聚合酶、基本转录因子、启动子元件等与真核生物相似 ;而古生菌的转录调控机制却更加类似于真细菌 ,在古生菌中发现并鉴定了许多类似于真细菌的转录调控蛋白。另外古生菌还具有某些独特的转录调控方式  相似文献   

12.
We analyzed length differences of eukaryotic, bacterial and archaeal proteins in relation to function, conservation and environmental factors. Comparing Eukaryotes and Prokaryotes, we found that the greater length of eukaryotic proteins is pervasive over all functional categories and involves the vast majority of protein families. The magnitude of these differences suggests that the evolution of eukaryotic proteins was influenced by processes of fusion of single-function proteins into extended multi-functional and multi-domain proteins. Comparing Bacteria and Archaea, we determined that the small but significant length difference observed between their proteins results from a combination of three factors: (i) bacterial proteomes include a greater proportion than archaeal proteomes of longer proteins involved in metabolism or cellular processes, (ii) within most functional classes, protein families unique to Bacteria are generally longer than protein families unique to Archaea and (iii) within the same protein family, homologs from Bacteria tend to be longer than the corresponding homologs from Archaea. These differences are interpreted with respect to evolutionary trends and prevailing environmental conditions within the two prokaryotic groups.  相似文献   

13.
Archaea, members of the third domain of life, are bacterial-looking prokaryotes that harbour many unique genotypic and phenotypic properties, testifying for their peculiar evolutionary status. The archaeal ancestor was probably a hyperthermophilic anaerobe. Two archaeal phyla are presently recognized, the Euryarchaeota and the Crenarchaeota. Methanogenesis was the main invention that occurred in the euryarchaeal phylum and is now shared by several archaeal groups. Adaptation to aerobic conditions occurred several times independently in both Euryarchaeota and Crenarchaeota. Recently, many new groups of Archaea that have not yet been cultured have been detected by PCR amplification of 16S ribosomal RNA from environmental samples. The phenotypic and genotypic characterization of these new groups is now a top priority for further studies on archaeal evolution.  相似文献   

14.
It is becoming increasingly clear that similarities exist in the manner in which extracytoplasmic proteins are targeted to complexes responsible for translocating these proteins across membranes in each of the three domains of life. In Eukarya and Bacteria, the signal recognition particle (SRP) directs nascent polypeptides to membrane-embedded translocation sites. In Archaea, the SRP protein targeting pathway apparently represents an intermediate between the bacterial and eukaryal systems. Understanding the archaeal SRP pathway could therefore reveal universal aspects of targeting not detected in current comparisons of the eukaryal and bacterial systems while possibly identifying aspects of the process either not previously reported or unique to Archaea.  相似文献   

15.
16.
The archaeal flagellum is a unique motility organelle. While superficially similar to the bacterial flagellum, several similarities have been reported between the archaeal flagellum and the bacterial type IV pilus system. These include the multiflagellin nature of the flagellar filament, N-terminal sequence similarities between archaeal flagellins and bacterial type IV pilins, as well as the presence of homologous proteins in the two systems. Recent advances in archaeal flagella research add to the growing list of similarities. First, the preflagellin peptidase that is responsible for processing the N-terminal signal peptide in preflagellins has been identified. The preflagellin peptidase is a membrane-bound enzyme topologically similar to its counterpart in the type IV pilus system (prepilin peptidase); the two enzymes are demonstrated to utilize the same catalytic mechanism. Second, it has been suggested that the archaeal flagellum and the bacterial type IV pilus share a similar mode of assembly. While bacterial flagellins and type IV pilins can be modified with O-linked glycans, N-linked glycans have recently been reported on archaeal flagellins. This mode of glycosylation, as well as the observation that the archaeal flagellum lacks a central channel, are both consistent with the proposed assembly model. On the other hand, the failure to identify other genes involved in archaeal flagellation by homology searches likely implies a novel aspect of the archaeal flagellar system. These interesting features remain to be deciphered through continued research. Such knowledge would be invaluable to motility and protein export studies in the Archaea.  相似文献   

17.
Archaea display amazing physiological properties that are of interest to understand at the molecular level including the ability to thrive at extreme environmental conditions, the presence of novel metabolic pathways (e.g. methanogenesis, methylaspartate cycle) and the use of eukaryotic-like protein machineries for basic cellular functions. Coupling traditional genetic and biochemical approaches with advanced technologies, such as genomics and proteomics, provides an avenue for scientists to discover new aspects related to the molecular physiology of archaea. This review emphasizes the unusual properties of archaeal proteomes and how high-throughput and specialized mass spectrometry-based proteomic studies have provided insight into the molecular properties of archaeal cells.  相似文献   

18.
Members of the third domain of life, the Archaea, possess structural, physiological, biochemical and genetic features distinct from Bacteria and Eukarya and, therefore, have drawn considerable scientific interest. Physiological, biochemical and molecular analyses have revealed many novel biological processes in these important prokaryotes. However, assessment of the function of genes in vivo through genetic analysis has lagged behind because suitable systems for the creation of mutants in most Archaea were established only in the past decade. Among the Archaea, sufficiently sophisticated genetic systems now exist for some thermophilic sulfur-metabolizing Archaea, halophilic Archaea and methanogenic Archaea. Recently, there have been developments in genetic analysis of thermophilic and methanogenic Archaea and in the use of genetics to study the physiology, metabolism and regulatory mechanisms that direct gene expression in response to changes of environmental conditions in these important microorganisms.  相似文献   

19.
In all three domains of life, extracytoplasmic proteins must overcome the hurdle presented by hydrophobic, lipid-based membranes. While numerous aspects of the protein translocation process have been well studied in bacteria and eukarya, little is known about how proteins cross the membranes of archaea. Analysis to date suggests that archael protein translocation is a mosaic of bacterial, eukaryal, and archaeal features, as indeed is much of archaeal biology. Archaea encode homologues of selected elements of the bacterial and eukaryal translocation machines, yet lack other important components of these two systems. Other aspects of the archaeal translocation process appear specific to this domain, possibly related to the extreme environmental conditions in which archsea thrive. In the following, current understanding of archaeal protein translocation is reviewed, as is recent progress in reconstitution of the archaeal translocation process in vitro.  相似文献   

20.
Genome analysis points to N-glycosylation as being an almost universal posttranslational modification in Archaea. Although such predictions have been confirmed in only a limited number of species, such studies are making it increasingly clear that the N-linked glycans which decorate archaeal glycoproteins present diversity in terms of both glycan composition and architecture far beyond what is seen in the other two domains of life. In addition to continuing to decipher pathways of N-glycosylation, recent efforts have revealed how Archaea exploit this variability in novel roles. As well as encouraging glycoprotein synthesis, folding and assembly into properly functioning higher ordered complexes, N-glycosylation also provides Archaea with a strategy to cope with changing environments. Archaea can, moreover, exploit the apparent species-specific nature of N-glycosylation for selectivity in mating, and hence, to maintain species boundaries, and in other events where cell-selective interactions are required. At the same time, addressing components of N-glycosylation pathways across archaeal phylogeny offers support for the concept of an archaeal origin for eukaryotes. In this MicroReview, these and other recent discoveries related to N-glycosylation in Archaea are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号