首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Physical and functional interactions define the molecular organization of the cell. Genetic interactions, or epistasis, tend to occur between gene products involved in parallel pathways or interlinked biological processes. High-throughput experimental systems to examine genetic interactions on a genome-wide scale have been devised for Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans and Drosophila melanogaster, but have not been reported previously for prokaryotes. Here we describe the development of a quantitative screening procedure for monitoring bacterial genetic interactions based on conjugation of Escherichia coli deletion or hypomorphic strains to create double mutants on a genome-wide scale. The patterns of synthetic sickness and synthetic lethality (aggravating genetic interactions) we observed for certain double mutant combinations provided information about functional relationships and redundancy between pathways and enabled us to group bacterial gene products into functional modules.  相似文献   

2.
The phenomenon of RNA-mediated interference (RNAi) was first discovered in the nematode Caenorhabditis elegans, in which introduction of double-stranded RNA causes specific inactivation of genes with corresponding sequences. Technical advances in RNAi methodology and the availability of the complete genome sequence have enabled the high-throughput, genome-wide RNAi analysis of this organism. Several groups have used large-scale RNAi to systematically examine every C. elegans gene for knock-down phenotypes, providing basal information to be mined in more detailed studies. Now, in addition to functional genomic RNAi analyses, high-throughput RNAi is also routinely used for rapid, genome-wide screens for genes involved in specific biological processes. The integration of high-throughput RNAi experiments with other large-scale data, such as DNA microarrays and protein-protein interaction maps, enhances the speed and reliability of such screens. The accumulation of RNAi phenotype data dramatically accelerates our understanding of this organism at the genetic level.  相似文献   

3.
4.
5.
If perturbing two genes together has a stronger or weaker effect than expected, they are said to genetically interact. Genetic interactions are important because they help map gene function, and functionally related genes have similar genetic interaction patterns. Mapping quantitative (positive and negative) genetic interactions on a global scale has recently become possible. This data clearly shows groups of genes connected by predominantly positive or negative interactions, termed monochromatic groups. These groups often correspond to functional modules, like biological processes or complexes, or connections between modules. However it is not yet known how these patterns globally relate to known functional modules. Here we systematically study the monochromatic nature of known biological processes using the largest quantitative genetic interaction data set available, which includes fitness measurements for ~5.4 million gene pairs in the yeast Saccharomyces cerevisiae. We find that only 10% of biological processes, as defined by Gene Ontology annotations, and less than 1% of inter-process connections are monochromatic. Further, we show that protein complexes are responsible for a surprisingly large fraction of these patterns. This suggests that complexes play a central role in shaping the monochromatic landscape of biological processes. Altogether this work shows that both positive and negative monochromatic patterns are found in known biological processes and in their connections and that protein complexes play an important role in these patterns. The monochromatic processes, complexes and connections we find chart a hierarchical and modular map of sensitive and redundant biological systems in the yeast cell that will be useful for gene function prediction and comparison across phenotypes and organisms. Furthermore the analysis methods we develop are applicable to other species for which genetic interactions will progressively become more available.  相似文献   

6.
Epistasis analysis, which reports on the extent to which the function of one gene depends on the presence of a second, is a powerful tool for studying the functional organization of the cell. Systematic genome-wide studies of epistasis, however, have been limited, with the majority of data being collected in the budding yeast, Saccharomyces cerevisiae. Here we present two 'pombe epistasis mapper' strategies, PEM-1 and PEM-2, which allow for high-throughput double mutant generation in the fission yeast, S. pombe. These approaches take advantage of a previously undescribed, recessive, cycloheximide-resistance mutation. Both systems can be used for genome-wide screens or for the generation of high-density, quantitative epistatic miniarray profiles (E-MAPs). Since S. cerevisiae and S. pombe are evolutionary distant, this methodology will provide insight into conserved biological pathways that are present in S. pombe, but not S. cerevisiae, and will enable a comprehensive analysis of the conservation of genetic interaction networks.  相似文献   

7.

Key message

Genome-wide association mapping as well as marker- and haplotype-based genome-wide selection unraveled a complex genetic architecture of grain yield with absence of large effect QTL and presence of local epistatic effects.

Abstract

The genetic architecture of grain yield determines to a large extent the optimum design of genomic-assisted wheat breeding programs. The main goal of our study was to examine the potential and limitations to dissect the genetic architecture of grain yield in wheat using a large experimental data set. Our study was based on phenotypic information and genomic data of 13,901 SNPs of a diverse set of 3816 elite wheat lines adapted to Central Europe. We applied genome-wide association mapping based on experimental and simulated data sets and performed marker- and haplotype-based genomic prediction. Computer simulations revealed for our mapping population a high power to detect QTL, even if they individually explained only 2.5% of the genetic variation. Despite this, we found no stable marker–trait associations when validating in independent subsets. A two-dimensional scan for marker–marker interactions indicated presence of local epistasis which was further supported by improved prediction abilities when shifting from marker- to haplotype-based genome-wide prediction approaches. We observed that marker effects estimated using genome-wide prediction approaches strongly varied across years albeit resulting in high prediction abilities. Thus, our results suggested that the prediction accuracy of genomic selection in wheat is mainly driven by relatedness rather than by exploiting knowledge of the genetic architecture.
  相似文献   

8.
WormBase (http://www.wormbase.org/) is a web-accessible central data repository for information about Caenorhabditis elegans and related nematodes. The past two years have seen a significant expansion in the biological scope of WormBase, including the integration of large-scale, genome-wide data sets, the inclusion of genome sequence and gene predictions from related species and active literature curation. This expansion of data has also driven the development and refinement of user interfaces and operability, including a new Genome Browser, new searches and facilities for data access and the inclusion of extensive documentation. These advances have expanded WormBase beyond the obvious target audience of C. elegans researchers, to include researchers wishing to explore problems in functional and comparative genomics within the context of a powerful genetic system.  相似文献   

9.
We report results from the first genome-wide application of a rational drug target selection methodology to a metazoan pathogen genome, the completed draft sequence of Brugia malayi, a parasitic nematode responsible for human lymphatic filariasis. More than 1.5 billion people worldwide are at risk of contracting lymphatic filariasis and onchocerciasis, a related filarial disease. Drug treatments for filariasis have not changed significantly in over 20 years, and with the risk of resistance rising, there is an urgent need for the development of new anti-filarial drug therapies. The recent publication of the draft genomic sequence for B. malayi enables a genome-wide search for new drug targets. However, there is no functional genomics data in B. malayi to guide the selection of potential drug targets. To circumvent this problem, we have utilized the free-living model nematode Caenorhabditis elegans as a surrogate for B. malayi. Sequence comparisons between the two genomes allow us to map C. elegans orthologs to B. malayi genes. Using these orthology mappings and by incorporating the extensive genomic and functional genomic data, including genome-wide RNAi screens, that already exist for C. elegans, we identify potentially essential genes in B. malayi. Further incorporation of human host genome sequence data and a custom algorithm for prioritization enables us to collect and rank nearly 600 drug target candidates. Previously identified potential drug targets cluster near the top of our prioritized list, lending credibility to our methodology. Over-represented Gene Ontology terms, predicted InterPro domains, and RNAi phenotypes of C. elegans orthologs associated with the potential target pool are identified. By virtue of the selection procedure, the potential B. malayi drug targets highlight components of key processes in nematode biology such as central metabolism, molting and regulation of gene expression.  相似文献   

10.
Predicting gene expression from sequence   总被引:36,自引:0,他引:36  
Beer MA  Tavazoie S 《Cell》2004,117(2):185-198
  相似文献   

11.
Arabidopsis genomic and network analyses have facilitated crop research towards the understanding of many biological processes of fundamental importance for agriculture. Genes that were identified through genomic analyses in Arabidopsis have been used to manipulate crop traits such as pathogen resistance, yield, water-use efficiency, and drought tolerance, with the effects being tested in field conditions. The integration of diverse Arabidopsis genome-wide datasets in probabilistic functional networks has been demonstrated as a feasible strategy to associate novel genes with traits of interest, and novel genomic methods continue to be developed. The combination of genome-wide location studies, using ChIP-Seq, with gene expression profiling data is affording a genome-wide view of regulatory networks previously delineated through genetic and molecular analyses, leading to the identification of novel components and of new connections within these networks.  相似文献   

12.
13.
Synthetic lethality has been proposed as a way to leverage the genetic differences found in tumor cells to affect their selective killing. Cohesins, which tether sister chromatids together until anaphase onset, are mutated in a variety of tumor types. The elucidation of synthetic lethal interactions with cohesin mutants therefore identifies potential therapeutic targets. We used a cross-species approach to identify robust negative genetic interactions with cohesin mutants. Utilizing essential and non-essential mutant synthetic genetic arrays in Saccharomyces cerevisiae, we screened genome-wide for genetic interactions with hypomorphic mutations in cohesin genes. A somatic cell proliferation assay in Caenorhabditis elegans demonstrated that the majority of interactions were conserved. Analysis of the interactions found that cohesin mutants require the function of genes that mediate replication fork progression. Conservation of these interactions between replication fork mediators and cohesin in both yeast and C. elegans prompted us to test whether other replication fork mediators not found in the yeast were required for viability in cohesin mutants. PARP1 has roles in the DNA damage response but also in the restart of stalled replication forks. We found that a hypomorphic allele of the C. elegans SMC1 orthologue, him-1(e879), genetically interacted with mutations in the orthologues of PAR metabolism genes resulting in a reduced brood size and somatic cell defects. We then demonstrated that this interaction is conserved in human cells by showing that PARP inhibitors reduce the viability of cultured human cells depleted for cohesin components. This work demonstrates that large-scale genetic interaction screening in yeast can identify clinically relevant genetic interactions and suggests that PARP inhibitors, which are currently undergoing clinical trials as a treatment of homologous recombination-deficient cancers, may be effective in treating cancers that harbor cohesin mutations.  相似文献   

14.
An ultimate goal of genetic research is to understand the connection between genotype and phenotype in order to improve the diagnosis and treatment of diseases. The quantitative genetics field has developed a suite of statistical methods to associate genetic loci with diseases and phenotypes, including quantitative trait loci (QTL) linkage mapping and genome-wide association studies (GWAS). However, each of these approaches have technical and biological shortcomings. For example, the amount of heritable variation explained by GWAS is often surprisingly small and the resolution of many QTL linkage mapping studies is poor. The predictive power and interpretation of QTL and GWAS results are consequently limited. In this study, we propose a complementary approach to quantitative genetics by interrogating the vast amount of high-throughput genomic data in model organisms to functionally associate genes with phenotypes and diseases. Our algorithm combines the genome-wide functional relationship network for the laboratory mouse and a state-of-the-art machine learning method. We demonstrate the superior accuracy of this algorithm through predicting genes associated with each of 1157 diverse phenotype ontology terms. Comparison between our prediction results and a meta-analysis of quantitative genetic studies reveals both overlapping candidates and distinct, accurate predictions uniquely identified by our approach. Focusing on bone mineral density (BMD), a phenotype related to osteoporotic fracture, we experimentally validated two of our novel predictions (not observed in any previous GWAS/QTL studies) and found significant bone density defects for both Timp2 and Abcg8 deficient mice. Our results suggest that the integration of functional genomics data into networks, which itself is informative of protein function and interactions, can successfully be utilized as a complementary approach to quantitative genetics to predict disease risks. All supplementary material is available at http://cbfg.jax.org/phenotype.  相似文献   

15.
Biochemists and geneticists, represented by Doug and Bill in classic essays, have long debated the merits of their methods. We revisited this issue using genomic data from the budding yeast, Saccharomyces cerevisiae, and found that genetic interactions outperformed protein interactions in predicting functional relationships between genes. However, when combined, these interaction types yielded superior performance, convincing Doug and Bill to call a truce.  相似文献   

16.
17.
Cell is the functional unit of life.To study the complex interactions of systems of biological molecules,it is crucial to dissect these molecules at the cell level.In recent years,major progresses have been made by plant biologists to profile gene expression in specific cell types at the genome-wide level.Approaches based on the isolation of cells,polysomes or nuclei have been developed and successfully used for studying the cell types from distinct organs of several plant species.These cell-level data sets revealed previously unrecognized cellular properties,such as cell-specific gene expression modules and hormone response centers,and should serve as essential resources for functional genomic analyses.Newly developed technologies are more affordable to many laboratories and should help to provide new insights at the cellular resolution in the near future.  相似文献   

18.
YV Sun 《Human genetics》2012,131(10):1677-1686
Millions of genetic variants have been assessed for their effects on the trait of interest in genome-wide association studies (GWAS). The complex traits are affected by a set of inter-related genes. However, the typical GWAS only examine the association of a single genetic variant at a time. The individual effects of a complex trait are usually small, and the simple sum of these individual effects may not reflect the holistic effect of the genetic system. High-throughput methods enable genomic studies to produce a large amount of data to expand the knowledge base of the biological systems. Biological networks and pathways are built to represent the functional or physical connectivity among genes. Integrated with GWAS data, the network- and pathway-based methods complement the approach of single genetic variant analysis, and may improve the power to identify trait-associated genes. Taking advantage of the biological knowledge, these approaches are valuable to interpret the functional role of the genetic variants, and to further understand the molecular mechanism influencing the traits. The network- and pathway-based methods have demonstrated their utilities, and will be increasingly important to address a number of challenges facing the mainstream GWAS.  相似文献   

19.
Lee HN  Magwene PM  Brem RB 《Genetics》2011,188(3):723-730
Morphological differences among individuals in a species represent one of the most striking aspects of biology, and a primary aim of modern genetics is to uncover the molecular basis of morphological variation. In a survey of meiosis phenotypes among environmental isolates of Saccharomyces cerevisiae, we observed an unusual arrangement of meiotic spores within the spore sac in a strain from Ivory Coast, West Africa. We mined population genomic data to identify CDC28 as the major genetic determinant of meiotic and budding cell shape behaviors in this strain. Molecular genetic methods confirmed the role of the Ivory Coast variant of CDC28 in the arrangement of spores after meiosis, in the shape of budding cells in rich medium and in the morphology of filamentous growth during nitrogen limitation. Our results shed new light on the role of CDC28 in yeast cell division, and our work suggests that with the growing availability of genomic data sets in many systems, a priori prediction of functional variants will become an increasingly powerful strategy in molecular genetics.  相似文献   

20.
Since the completion of the genome project of the nematode C. elegans in 1998, functional genomic approaches have been applied to elucidate the gene and protein networks in this model organism. The recent completion of the whole genome of C. briggsae, a close sister species of C. elegans, now makes it possible to employ the comparative genomic approaches for identifying regulatory mechanisms that are conserved in these species and to make more precise annotation of the predicted genes. RNA interference (RNAi) screenings in C. elegans have been performed to screen the whole genome for the genes whose mutations give rise to specific phenotypes of interest. RNAi screens can also be used to identify genes that act genetically together with a gene of interest. Microarray experiments have been very useful in identifying genes that exhibit co-regulated expression profiles in given genetic or environmental conditions. Proteomic approaches also can be applied to the nematode, just as in other species whose genomes are known. With all these functional genomic tools, genetics will still remain an important tool for gene function studies in the post genome era. New breakthroughs in C. elegans biology, such as establishing a feasible gene knockout method, immortalized cell lines, or identifying viruses that can be used as vectors for introducing exogenous gene constructs into the worms, will augment the usage of this small organism for genome-wide biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号