首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Dictyostelium discoideum cell surface antigen PsA is a glycoprotein which first appears in the multicellular stage soon after tip formation and is selectively expressed on prespore cells. The D19 gene encodes an mRNA sequence which is highly enriched in prespore over prestalk cells in the slug stage. We have determined 81 amino acid residues of N-terminal sequence from immunoaffinity-purified PsA protein and shown this sequence to be identical to the predicted sequence of the D19 gene. There are several short repeat elements close to the C terminus, and unequal crossing-over within these is proposed to account for the size polymorphism observed in PsA protein isolated from different D. discoideum strains. The repeats are proline rich and show similarity to the C-terminal region of the D. discoideum cell adhesion molecule, contact sites A. The extreme C terminus, which is also homologous to contact sites A, is characteristic of proteins attached to the plasma membrane via a glycosyl-phosphatidylinositol link. We have marked the PsA gene by insertion of an oligonucleotide encoding an epitope of the human c-myc protein. A construct containing this gene and 990 base pairs of 5'-flanking region directed correct temporal and spatial mRNA accumulation. We found the marked PsA protein, detected with the human c-myc antibody, to be correctly localized on the surface of cells.  相似文献   

2.
Unique purine-rich mRNA sequences embedded in the coding sequences of a distinct group of gammaherpesvirus maintenance proteins underlie the ability of the latently infected cell to minimize immune recognition. The Epstein-Barr virus nuclear antigen, EBNA1, a well characterized lymphocryptovirus maintenance protein has been shown to inhibit in cis antigen presentation, due in part to a large internal repeat domain encoding glycine and alanine residues (GAr) encoded by a purine-rich mRNA sequence. Recent studies have suggested that it is the purine-rich mRNA sequence of this repeat region rather than the encoded GAr polypeptide that directly inhibits EBNA1 self-synthesis and contributes to immune evasion. To test this hypothesis, we generated a series of EBNA1 internal repeat frameshift constructs and assessed their effects on cis-translation and endogenous antigen presentation. Diverse peptide sequences resulting from alternative repeat reading frames did not alleviate the translational inhibition characteristic of EBNA1 self-synthesis or the ensuing reduced surface presentation of EBNA1-specific peptide-MHC class I complexes. Human cells expressing the EBNA1 frameshift variants were also poorly recognized by antigen-specific T-cells. Furthermore, a comparative analysis of the mRNA sequences of the corresponding repeat regions of different viral maintenance homologues highlights the high degree of identity between the nucleotide sequences despite very little homology in the encoded amino acid sequences. Based on these combined observations, we propose that the cis-translational inhibitory effect of the EBNA1 internal repeat sequence operates mechanistically at the nucleotide level, potentially through RNA secondary structural elements, and is unlikely to be mediated through the GAr polypeptide. The demonstration that the EBNA1 repeat mRNA sequence and not the encoded protein sequence underlies immune evasion in this class of virus suggests a novel approach to therapeutic development through the use of anti-sense strategies or small molecules targeting EBNA1 mRNA structure.  相似文献   

3.
4.
A monoclonal antibody, H23, that specifically recognizes a breast-tumor-associated antigen, was used to isolate a cDNA insert that codes for the antigenic epitope. Nucleotide sequencing of this cDNA, as well as a longer 850-bp cDNA insert, shows that they are composed of 60-bp (G + C)-rich tandem repeating units. The coding strand was determined and codes for a proline-rich 20-amino-acid repeat motif. A comparison of the highly conserved repeat unit with the deduced flanking amino acid sequences demonstrates conservation of specific subregions of the repeat consensus within the flanking amino acids. Hybridization of the 60-bp cDNA probe with RNAs extracted from a variety of primary and metastatic human tumors yields relatively high levels of hybrid with the breast carcinomas, as compared to lower hybrid levels with RNAs from other epithelial tumors. RNA extracted from breast tissue adjacent to the tumor or from benign breast tumors, demonstrates low or undetectable levels of hybridization. Probing Southern blots with the 60-bp repeat shows that the tumor antigen is highly polymorphic and contains a variable number of tandem repeats (VNTRs). The VNTR nature of the gene was confirmed by probing Southern blots with unique genomic sequences that are physically linked to an isolated gene fragment that also contains the tandem repeat array. Mouse cells transfected with this gene fragment produce tumor antigen that is readily detected by H23 monoclonal antibodies. The allelic forms seen in 10 different primary human tumors demonstrate 100% concordance with the various mRNA species expressed. These studies are extended to the protein forms detected by immunoblot analyses that show both a correlation of the expressed tumor antigen species with the allelic forms as well as significantly increased expression in breast cancer tissue. The above studies unequivocally establish the over-expression of a VNTR gene coding for an epithelial tumor antigen in human breast cancer tissue.  相似文献   

5.
Neuromodulin (also called GAP43, G50, F1, pp46), a neural-specific calmodulin binding protein, is a major protein kinase C substrate found in developing and regenerating neurons. Here, we report the immunocytochemical characterization of neuromodulin in cultured 0-2A bipotential glial precursor cells obtained from newborn rat brain. Neuromodulin is also present in oligodendrocytes and type 2 astrocytes (stellate-shaped astrocytes), which are both derived from the bipotential glial 0-2A progenitor cells, but is absent of type 1 astrocytes (flat protoplasmic astrocytes). These results support the hypothesis of a common cell lineage for neurons and bipotential 0-2A progenitor cells and suggest that neuromodulin plays a more general role in plasticity during development of the central nervous system. The expression of neuromodulin in secondary cultures of newborn rat oligodendrocytes and its absence in type 1 astrocytes was confirmed by Northern blot analysis of isolated total RNA from these different types of cells using a cDNA probe for the neuromodulin mRNA and by Western blot analysis of the cell extracts using polyclonal antibodies against neuromodulin. The properties of the neuromodulin protein in cultured oligodendrocytes and neuronal cells have been compared. Although neuromodulin in oligodendrocytes is soluble in 2.5% perchloric acid like the neuronal counterpart it migrates essentially as a single protein spot on two-dimensional gel electrophoresis whereas the neuronal antigen can be resolved into at least three distinct protein spots. To obtain precise alignments of the different neuromodulin spots from these two cell types, oligodendrocyte and neuronal cell extracts were mixed together and run on the same two-dimensional gel electrophoresis system. Oligodendroglial neuromodulin migrates with a pI identical to the basic forms of the neuronal protein in isoelectric focusing gel. However, the glial neuromodulin shows a slightly lower mobility in the second dimensional lithium dodecyl sulfate-PAGE than its neuronal counterpart. As measured by 32Pi incorporation, neuromodulin phosphorylation in oligodendrocytes is dramatically increased after short-term phorbol ester treatments, which activate protein kinase C, and is totally inhibited by long-term phorbol ester treatments, which downregulates protein kinase C, thus confirming its probable specific in vivo phosphorylation by protein kinase C. In primary cultures of neuronal cells, two of the three neuromodulin spots were observed to be phosphorylated with an apparent preferential phosphorylation of the more acid forms.  相似文献   

6.
DP5, which contains a BH3 domain, was cloned as a neuronal apoptosis-inducing gene. To confirm that DP5 interacts with members of the Bcl-2 family, 293T cells were transiently co-transfected with DP5 and Bcl-xl cDNA constructs, and immunoprecipitation was carried out. The 30-kDa Bcl-xl was co-immunoprecipitated with Myc-tagged DP5, suggesting that DP5 physically interacts with Bcl-xl in mammalian cells. Previously, we reported that DP5 is induced during neuronal apoptosis in cultured sympathetic neurons. Here, we analyzed DP5 gene expression and the specific interaction of DP5 with Bcl-xl during neuronal death induced by amyloid-beta protein (A beta). DP5 mRNA was induced 6 h after treatment with A beta in cultured rat cortical neurons. The protein encoded by DP5 mRNA showed a specific interaction with Bcl-xl. Induction of DP5 gene expression was blocked by nifedipine, an inhibitor of L-type voltage-dependent calcium channels, and dantrolene, an inhibitor of calcium release from the endoplasmic reticulum. These results suggested that the induction of DP5 mRNA occurs downstream of the increase in cytosolic calcium concentration caused by A beta. Moreover, DP5 specifically interacts with Bcl-xl during neuronal apoptosis following exposure to A beta, and its binding could impair the survival-promoting activities of Bcl-xl. Thus, the induction of DP5 mRNA and the interaction of DP5 and Bcl-xl could play significant roles in neuronal degeneration following exposure to A beta.  相似文献   

7.
—The brain-specific antigens 14·3·2, GFA, A5, F3, D1, D2, D3 and C1 were quantitated in a short-term astroglial cell culture taken as a model of glial cells, and in synaptosomes, synaptosomal membranes and synaptic vesicles as neuronal material. Furthermore, the antigens were quantitated in newborn rat brain, as this served as the starting material for the cell culture. The membrane antigens C1, D1, D2 and D3 were absent from the cultured astroglia, indicating a neuronal origin for these antigens. C1 was enriched 3-fold in synaptosomes and synaptosomal membranes and more than 10-fold in synaptic vesicles indicating that this antigen might be a marker protein for nerve endings. The name Synaptin is introduced for this antigen. Conversely, the data on the antigens D1, D2 and D3 indicated that these antigens were not restricted to the synaptosomes although they were of neuronal origin. Trace amounts of the cathodal part of the heterogeneous cytoplasmic antigen 14·3·2 were present in the cell culture, possibly originating from a few contaminating neurons. The cytoplasmic antigens A5 and F3 were found both in the astroglial culture and in the synaptosomal fraction. F3, however, was found in low concentration in the synaptosomes and 3-fold enriched in newborn rat brain compared to rat brain from 35-day-old rats or to 21-day-old brain cell cultures. It was therefore regarded as a brain specific fetal antigen. The antigen GFA was highly enriched in the astroglial culture compared to whole brain and only trace amounts were found in the synaptosomal fraction supporting the astroglial origin of this antigen.  相似文献   

8.
Summary We previously determined the amino acid sequence to the epitope (ATLFKTR) of cytochrome c fromCandida krusei, which is cross-reactive to the lung cancer-specific human monoclonal antibody HB4C5. Here we report that an antigen messenger RNA, which codes for a structure similar to the cytochrome c epitope, is expressed in the human lung adenocarcinoma A549. Sequencing analysis has revealed that this messenger RNA encodes a novel 190 amino acid polypeptide of 21-kDa containing an amino acid sequence (ALLFFT) similar to the cytochrome c epitope, although the total messenger RNA sequence is apparently different from the cytochrome c messenger RNA. Western analysis indicated that an antibody-recognizable 21-kDa antigen which has the same molecular weight as the predicted polypeptide is expressed in the A549 adenocarcinoma. Thein vitro translated product of the antigen messenger RNA and synthesized ALLFFT peptide were both shown to be reactive with the monoclonal antibody, indicating that this protein contains the epitope which enables A549 cells to specifically react with the antibody. The antigen mRNA was not expressed in non-transformed fibroblasts, suggesting that the antigen mRNA expression was associated with cellular transformation. Also in part of the antigen nucleotide sequence, there was a segment that had about 90% homology to the long terminal repeat sequence (no. 297–475) of the human endogenous retrovirus HERV-K10, which was related to the mouse mammary tumor virus.  相似文献   

9.
We established adrenal medullary cell lines from transgenic mice expressing an oncogene, the temperature-sensitive simian virus 40 large T-antigen, under the control of the tyrosine hydroxylase promoter. A clonal cell line, named tsAM5D, conditionally grew at a permissive temperature of 33 degrees C and exhibited the dopaminergic chromaffin cell phenotype as exemplified by the expression pattern of mRNA for catecholamine-synthesizing enzymes and secretory vesicle-associated proteins. tsAM5D cells proliferated at the permissive temperature in response to basic fibroblast growth factor (bFGF) and ciliary neurotrophic factor (CNTF). At a non-permissive temperature of 39 degrees C, bFGF and CNTF acted synergistically to differentiate tsAM5D cells into neuron-like cells. In addition, tsAM5D cells caused to differentiate by bFGF plus CNTF at 39 degrees C became dependent solely on nerve growth factor for their survival and showed markedly enhanced neurite outgrowth. In the presence of bFGF and CNTF, the morphological change induced by the temperature shift was associated with up-regulated expression of neuronal marker genes including neuron-specific enolase, growth-associated protein-43, microtubule-associated protein 2, neurofilament, and p75 neurotrophin receptor, indicating that the cells underwent neuronal differentiation. Thus, we demonstrated that tsAM5D cells could proliferate at permissive 33 degrees C, and also had the capacity to terminally differentiate into neuron-like cells in response to bFGF and CNTF when the oncogene was inactivated by shifting the temperature to non-permissive 39 degrees C. These results suggest that tsAM5D cells should be a good tool to allow a detailed study of mechanisms regulating neuronal differentiation.  相似文献   

10.
The rat aldolase C gene encodes a glycolytic enzyme strongly expressed in adult brain. We previously reported that a combination of distal and proximal 5' flanking sequences, the A + C + 0.8 kilobase (kb) pairs fragments, ensured high brain-specific expression in vivo (Skala et al. 1998). We show here that the expression pattern conferred by these sequences, when placed in front of the chloramphenicol acetyltransferase (CAT) or the enhanced green fluorescent protein (EGFP) reporter genes in transgenic mice, is similar to the distribution of the endogenous mRNA and protein. Double immunostaining for neuronal or glial cell-specific markers and for the EGFP protein indicates that the A + C + 0.8 kb genomic sequences from the rat aldolase C gene direct a predominant expression in neuronal cells of adult brain.  相似文献   

11.
The rat aldolase C gene encodes a glycolytic enzyme strongly expressed in adult brain. We previously reported that a combination of distal and proximal 5' flanking sequences, the A+C+0.8 kilobase (kb) pairs fragments, ensured high brain-specific expression in vivo (Skala et al. 1998). We show here that the expression pattern conferred by these sequences, when placed in front of the chloramphenicol acetyltransferase (CAT) or the enhanced green fluorescent protein (EGFP) reporter genes in transgenic mice, is similar to the distribution of the endogenous mRNA and protein. Double immunostaining for neuronal or glial cell-specific markers and for the EGFP protein indicates that the A+C+0.8 kb genomic sequences from the rat aldolase C gene direct a predominant expression in neuronal cells of adult brain.  相似文献   

12.
The protein p35 is a regulatory subunit of cyclin-dependent kinase 5. It has no recognized homology to cyclins but binds to and activates cyclin-dependent kinase 5 directly in the absence of other protein molecules. Cyclin-dependent kinase 5 was initially isolated by homology to the key cell cycle regulator cdc2 kinase and later identified as a neuronal kinase that phosphorylates histone H1, tau or neurofilaments. This kinase is localized in axons of the developing and mature nervous system. To understand the role of p35 as a regulator of cyclin-dependent kinase 5 activity in the CNS, we examined the pattern of expression of p35 mRNA in the nervous system of embryonic, early postnatal and adult mice. In separate experiments, we also examined the spatial distribution of cyclin-dependent kinase 5 mRNA and the activity of cyclin-dependent kinase 5/p35 kinase complex. Postmitotic cells express p35 mRNA immediately after they leave the zones of cell proliferation. It is also expressed in developing axonal tracts in the brain. Cyclin-dependent kinase 5 mRNA is present in postmitotic and in proliferative cells throughout the embryonic central nervous system. During early postnatal period signal for p35 mRNA declines while that for cyclin-dependent kinase 5 mRNA increases throughout the brain. In the adult brain although both p35 and cyclin-dependent kinase 5 mRNAs are expressed at relatively high levels in certain structures associated with the limbic system, considerable differences exist in the patterns of their distribution in other parts of the brain. These data suggest that the p35/cyclin-dependent kinase 5 complex may be associated with early events of neuronal development such as neuronal migration and axonal growth while in the limbic system of the mature brain it may be associated with the maintenance of neuronal plasticity.  相似文献   

13.
14.
In eukaryotes, the nuclear export of mRNA is mediated by nuclear export factor 1 (NXF1) receptors. Metazoans encode additional NXF1-related proteins of unknown function, which share homology and domain organization with NXF1. Some mammalian NXF1-related genes are expressed preferentially in the brain and are thought to participate in neuronal mRNA metabolism. To address the roles of NXF1-related factors, we studied the two mouse NXF1 homologues, mNXF2 and mNXF7. In neuronal cells, mNXF2, but not mNXF7, exhibited mRNA export activity similar to that of Tip-associated protein/NXF1. Surprisingly, mNXF7 incorporated into mobile particles in the neurites that contained poly(A) and ribosomal RNA and colocalized with Staufen1-containing transport granules, indicating a role in neuronal mRNA trafficking. Yeast two-hybrid interaction, coimmunoprecipitation, and in vitro binding studies showed that NXF proteins bound to brain-specific microtubule-associated proteins (MAP) such as MAP1B and the WD repeat protein Unrip. Both in vitro and in vivo, MAP1B also bound to NXF export cofactor U2AF as well as to Staufen1 and Unrip. These findings revealed a network of interactions likely coupling the export and cytoplasmic trafficking of mRNA. We propose a model in which MAP1B tethers the NXF-associated mRNA to microtubules and facilitates their translocation along dendrites while Unrip provides a scaffold for the assembly of these transport intermediates.  相似文献   

15.
A transformation-sensitive human protein (IEF SSP 3521) that is 2-fold up-regulated in SV40-transformed MRC-5 fibroblasts has been purified by two-dimensional gel electrophoresis, microsequenced, and cDNA cloned using oligodeoxyribonucleotides. The 2.1-kilobase cDNA encodes a 543-amino acid protein with a calculated molecular mass of 62.6 kDa and a calculated pI of 6.77. Expression of the cDNA in AMA cells using the vaccinia virus expression system followed by two-dimensional gel electrophoresis showed that the protein comigrated with IEF SSP 3521. The protein contains the tetratricopeptide repeat found in families of fungal proteins required for mitosis and RNA synthesis. In particular, the protein has 42% amino acid sequence identity to STI1, a stress-inducible mediator of the heat shock response in Saccharomyces cerevisiae. Northern blot analysis indicated that the 3521 mRNA is up-regulated in several transformed cells. Immunofluorescence studies using a polyclonal antibody raised against the purified protein revealed that the antigen is present mainly in the nucleus of SV40 transformed MRC-5 fibroblasts, while it localizes to the Golgi apparatus and small vesicles in their normal counterparts. The possible physiological role of IEF SSP 3521 is discussed in the light of the structural relationship with STI1.  相似文献   

16.
A novel human brain complementary DNA sequence encodes n-chimaerin, a 34,000 Mr protein. A single cysteine-rich sequence CX2CX13CX2CX7CX7C in the N-terminal half of n-chimaerin shares almost 50% identity with corresponding sequences in the C1 regulatory domain of protein kinase C. The C-terminal half of n-chimaerin has 42% identity with the C-terminal region (amino acid residues 1050 to 1225) of BCR, the product of the breakpoint cluster region gene involved in Philadelphia (Ph') chromosome translocation. n-Chimaerin mRNA (2.2 x 10(3) base-pairs) is specifically expressed in the brain, with the highest amounts being in the hippocampus and cerebral cortex. The mRNA has a neuronal distribution and is expressed in neuroblastoma cells, but not in C6 glioma or primary astrocyte cultures. The similarity of two separate regions of n-chimaerin to domains of protein kinase C and BCR has intriguing implications with respect to its evolutionary origins, its function in the brain and potential phorbol-ester-binding properties.  相似文献   

17.
Studies initiated to determine the expression of CYP1A1/1A2 isoenzymes in the primary cultures of rat brain neuronal and glial cells revealed significant activity of CYP1A-dependent 7-ethoxyresorufin-o-dealkylase (EROD) in microsomes prepared from both rat brain neuronal and glial cells. RT-PCR and immunocytochemical studies demonstrated constitutive mRNA and protein expression of CYP1A1 and 1A2 isoenzymes in cultured neuronal and glial cells. Cultured neurons exhibited relatively higher constitutive mRNA and protein expression of CYP1A1 and 1A2 isoenzymes, associated with higher activity of EROD than the glial cells. Induction studies with 3-methylchlorantherene (MC), a known CYP1A-inducer, resulted in significant concentration dependent increase in the activity of EROD in cultured rat brain cells with glial cells exhibiting a greater magnitude of induction than the neuronal cells. This difference in the increase in enzyme activity was also observed with RT-PCR and immunocytochemical studies, indicating relatively higher increase in CYP1A1 and 1A2 mRNA as well as protein expression in the cultured glial cells when compared to the neuronal cells. The greater magnitude of induction of CYP1A1 in glial cells is of significance, as these cells are components of the blood-brain barrier and it is suggested that they have a potential role in the toxication-detoxication mechanism. Our data indicating differences in the expression and sensitivity of CYP1A1 isoenzymes in cultured rat brain cells will not only help in identifying and distinguishing xenobiotic metabolizing capability of these cells but also in understanding the vulnerability of these specific cell types towards neurotoxicants.  相似文献   

18.
A neuronal antigen (HuD) recognized by the sera of patients with antibody-associated paraneoplastic encephalomyelitis has been isolated by screening a lambda cerebellar expression library. The recombinant antigen provides an unambiguous assay for this rare condition associated with small cell lung cancer. The recombinant antigen has been used to identify specific infiltrating lymphocytes in tumors and affected brain tissues of patients with antibody-associated paraneoplastic encephalomyelitis and sensory neuronopathy. HuD mRNA is uniquely expressed in brain tissue. The HuD protein shows a remarkable homology to the Drosophila proteins Elav and Sex-lethal and is likely to play a role in neuron-specific RNA processing.  相似文献   

19.
In Huntington’s disease (HD) the imperfect expanded CAG repeat in the first exon of the HTT gene leads to the generation of a polyglutamine (polyQ) protein, which has some neuronal toxicity, potentially mollified by formation of aggregates. Accumulated research, reviewed here, implicates both the polyQ protein and the expanded repeat RNA in causing toxicity leading to neurodegeneration in HD. Different theories have emerged as to how the neurodegeneration spreads throughout the brain, with one possibility being the transport of toxic protein and RNA in extracellular vesicles (EVs). Most cell types in the brain release EVs and these have been shown to contain neurodegenerative proteins in the case of prion protein and amyloid-beta peptide. In this study, we used a model culture system with an overexpression of HTT-exon 1 polyQ-GFP constructs in human 293T cells and found that the EVs did incorporate both the polyQ-GFP protein and expanded repeat RNA. Striatal mouse neural cells were able to take up these EVs with a consequent increase in the green fluorescent protein (GFP) and polyQ-GFP RNAs, but with no evidence of uptake of polyQ-GFP protein or any apparent toxicity, at least over a relatively short period of exposure. A differentiated striatal cell line expressing endogenous levels of Hdh mRNA containing the expanded repeat incorporated more of this mRNA into EVs as compared to similar cells expressing this mRNA with a normal repeat length. These findings support the potential of EVs to deliver toxic expanded trinucleotide repeat RNAs from one cell to another, but further work will be needed to evaluate potential EV and cell-type specificity of transfer and effects of long-term exposure. It seems likely that expanded HD-associated repeat RNA may appear in biofluids and may have use as biomarkers of disease state and response to therapy.  相似文献   

20.
Immature motoneurons are highly susceptible to degeneration following axon injury. The response of perineuronal glia to axon injury may significantly influence neuronal survival and axon regeneration. We have examined the central reactions to neonatal facial nerve transection with emphasis on the expression of complement component C3 (C3) and the multifunctional apolipoprotein J (ApoJ). Axotomy was performed on one-day-old rats. Animals were perfused from eight hours to two weeks after the lesion. The astroglial marker, glial fibrillary acidic protein (GFAP) was increased from one day and the microglial marker OX-42 from two days after injury. ApoJ immunoreactivity was increased in axotomized neuronal perikarya and astroglial cells from one day postaxotomy, but no C3 immunoreactive profiles were found at any postoperative survival time. Cell proliferation as judged by bromodeoxyuridine labeling and immunoreactivity for the cyclin Ki-67 antigen (antibody MIB5) occurred only at two days after injury. Double immunostaining revealed that the vast majority of proliferating cells were microglia, although occasional cells double labeled astrocytes were found as well. Our results indicate that the non-neuronal response in neonatal animals differ from that of adult ones as follows: 1) microglia transform rapidly into phagocytes in parallel with the degeneration of axotomized neurons, 2) despite the presence of neuronal degeneration, no expression of C3 was found, and the upregulation of the expression of the complement C3 receptor (CR3) is delayed, 3) ApoJ is strongly upregulated in perineuronal astrocytes as well as in the axotomized motoneurons. The marked upregulation of ApoJ in both instances suggests a general role of this protein in the neuronal response to axotomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号