首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the bacteriorhodopsin-containing proteoliposomes, a laser flash is found to induce formation of a bathointermediate decaying in several seconds, the difference spectrum being similar to the purple-blue transition. Different pH buffers do not affect the intermediate, whereas an uncoupler, gramicidin A, and lipophilic ions accelerate decay of the intermediate or inhibit its formation. In the liposomes containing E204Q bacteriorhodopsin mutant, formation of the intermediate is suppressed. In the wild-type bacteriorhodopsin liposomes, the bathointermediate formation is pH-independent within the pH 5-7 range. The efficiency of the long-lived O intermediate formation increases at a low pH. In the wild-type as well as in the E204Q mutant purple membrane, the O intermediate decay is slowed down at slightly higher pH values than that of the purple-blue transition. It is suggested that the membrane potential affects the equilibrium between the bacteriorhodopsin ground state (Glu-204 is protonated and Asp-85 is deprotonated) and the O intermediate (Asp-85 is protonated and Glu-204 is deprotonated), stabilizing the latter by changing the relative affinity of Asp-85 and Glu-204 to H(+). At a low pH, protonation of a proton-releasing group (possibly Glu-194) in the bacteriorhodopsin ground state seems to prevent deprotonation of the Glu-204 during the photocycle. Thus, all protonatable residues of the outward proton pathway should be protonated in the O intermediate. Under such conditions, membrane potential stabilization of the O intermediate in the liposomes can be attributed to the direct effect of the potential on the pK value of Asp-85.  相似文献   

2.
Light absorbed by bacteriorhodopsin (bR) leads to a proton being released at the extracellular surface of the purple membrane. Structural studies as well as studies of mutants of bR indicate that several groups form a pathway for proton transfer from the Schiff base to the extracellular surface. These groups include D85, R82, E204, E194, and water molecules. Other residues may be important in tuning the initial state pK(a) values of these groups and in mediating light-induced changes of the pK(a) values. A potentially important residue is R134: it is located close to E194 and might interact electrostatically to affect the pK(a) of E194 and light-induced proton release. In this study we investigated effects of the substitution of R134 with a histidine on light-induced proton release and on the photocycle transitions associated with proton transfer. By measuring the light-induced absorption changes versus pH, we found that the R134H mutation results in an increase in the pK(a) of the proton release group in both the M (0.6 pK unit) and O (0.7 pK unit) intermediate states. This indicates the importance of R134 in tuning the pK(a) of the group that, at neutral and high pH, releases the proton upon M formation (fast proton release) and that, at low pH, releases the proton simultaneously with O decay (slow proton release). The higher pK(a) of the proton release group found in R134H correlates with the slowing of the rate of the O --> bR transition at low pH and probably is the cause of this slowing. The pH dependence of the fraction of the O intermediate is altered in R134H compared to the WT but is similar to that in the E194D mutant: a very small amount of O is present at neutral pH, but the fraction of O increases greatly upon decreasing the pH. These results provide further support for the hypothesis that the O --> bR transition is controlled by the rate of deprotonation of the proton release group. These data also provide further evidence for the importance of the R134-E194 interaction in modulating proton release from D85 after light has led to its being protonated.  相似文献   

3.
Titration of Asp-85, the proton acceptor and part of the counterion in bacteriorhodopsin, over a wide pH range (2-11) leads us to the following conclusions: 1) Asp-85 has a complex titration curve with two values of pKa; in addition to a main transition with pKa = 2.6 it shows a second inflection point at high pH (pKa = 9.7 in 150-mM KCl). This complex titration behavior of Asp-85 is explained by interaction of Asp-85 with an ionizable residue X'. As follows from the fit of the titration curve of Asp-85, deprotonation of X' increases the proton affinity of Asp-85 by shifting its pKa from 2.6 to 7.5. Conversely, protonation of Asp-85 decreases the pKa of X' by 4.9 units, from 9.7 to 4.8. The interaction between Asp-85 and X' has important implications for the mechanism of proton transfer. In the photocycle after the formation of M intermediate (and protonation of Asp-85) the group X' should release a proton. This deprotonated state of X' would stabilize the protonated state of Asp-85.2) Thermal isomerization of the chromophore (dark adaptation) occurs on transient protonation of Asp-85 and formation of the blue membrane. The latter conclusion is based on the observation that the rate constant of dark adaptation is directly proportional to the fraction of blue membrane (in which Asp-85 is protonated) between pH 2 and 11. The rate constant of isomerization is at least 10(4) times faster in the blue membrane than in the purple membrane. The protonated state of Asp-85 probably is important for the catalysis not only of all-trans <=> 13-cis thermal isomerization during dark adaptation but also of the reisomerization of the chromophore from 13-cis to all-trans configuration during N-->O-->bR transition in the photocycle. This would explain why Asp-85 stays protonated in the N and O intermediates.  相似文献   

4.
The last stages of the photocycle of the photosynthetic pigment all-trans bacteriorhodopsin (bR570), as well as its proton pump mechanism, are markedly pH dependent. We have measured the relative amount of the accumulated O630 intermediate (Phir), as well as its rise and decay rate constants (kr and kd, respectively), over a wide pH range. The experiments were carried out in deionized membrane suspensions to which varying concentrations of metal cations and of large organic cations were added. The observed pH dependencies, s-shaped curves in the case of Phir and bell-shaped curves for kr and kd, are interpreted in terms of the titration of three protein residues denoted as R1, R2, and R3. The R1 titration is responsible for the increase in Phir, kr, and kd upon lowering the pH from pH approximately 9.5 to 7. At low pH Phir exhibits a secondary rise which is attributed to the titration of a low pKa group, R2. After reaching a maximum at pH approximately 7, kr and kd undergo a decrease upon decreasing the pH, which is attributed to the titration of R3. All three titrations exhibit pKa values which decrease upon increasing the salt concentration. As in the case of the Purple (bR570) if Blue (bR605) equilibrium, divalent cations are substantially more effective than monovalent cations in shifting the pKa values. Moreover, bulky organic cations are as effective as small metal cations. It is concluded that analogously to the Purple if Blue equilibrium, the salt binding sites which control the pKa values of R1, R2, and R3 are located on, or close to, the membrane surface. Possible identifications of the three protein residues are considered. Experiments with the E204Q mutant show that the mutation has markedly affected the R2 (Phir) titration, suggesting that R2 should be identified with Glu-204 or with a group whose pKa is affected by Glu-204. The relation between the R1, R2 and R3 titrations and the proton pump mechanism is discussed. It is evident that the pH dependence of Phir is unrelated to the measured pKa of the group (XH) which releases the proton to the extracellular medium during the photocycle. However, since the same residue may exhibit different pKa values at different stages of the photocycle, it cannot be excluded that R2 or R3 may be identified with XH.  相似文献   

5.
The pKa values of ionizable groups that lie between the active site region of bacteriorhodopsin (bR) and the extracellular surface of the protein are reported. Glu-204 is found to have an elevated pKa in the resting state of bR, suggesting that it corresponds to the proton-releasing group in bR. Its elevated pKa is predicted to be due in part to strong repulsive interactions with Glu-9. Following trans-cis isomerization of the retinal chromophore and the transfer of a proton to Asp-85, polar groups on the protein are able to interact more strongly with the ionized state of Glu-204, leading to a substantial reduction of its pKa. This suggests a general mechanism for proton release in which isomerization and subsequent charge separation initially produce a new electrostatic balance in the active site of bR. Here it is proposed that those events in turn drives a conformational change in the protein in which the ionized state of Glu-204 can be stabilized through interactions with groups that were previously inaccessible. Whether these groups should be identified with polar moieties in the protein, bound waters, or Arg-82 is an important mechanistic question whose elucidation will require further study.  相似文献   

6.
Deuterium kinetic isotope effects (KIE) were measured, and proton inventory plots were constructed, for the rates of reactions in the photocycles of wild-type bacteriorhodopsin and several site-specific mutants. Consistent with earlier reports from many groups, very large KIEs were observed for the third (and largest) rise component for the M state and for the decay of the O state, processes both linked to proton transfers in the extracellular region. The proton inventory plots (ratio of reaction rates in mixtures of H(2)O and D(2)O to that in H(2)O vs mole fraction of D(2)O) were approximately linear for the first and second M rise components and for M decay, as well as for O decay, indicating that the rates of these reactions are limited by simple proton transfer. Uniquely, the third rise component of M (and in the D96N mutant also a fourth rise component) exhibited a strongly curved proton inventory plot, suggesting that its rate, which largely accounts for the rate of deprotonation of the retinal Schiff base, depends on a complex multiproton process. This curvature is observed also in the E194Q, E204Q, and Y57F mutants but not in the R82A mutant. From these findings, and from the locations of bound water in the extracellular region in the crystal structure of the protein [Luecke, Schobert, Richter, Cartailler, and Lanyi (1999) J. Mol. Biol. 291, 899-911], we suspect that the effects of deuterium substitution on the formation of the M state originate from cooperative rearrangements of the extensively hydrogen-bonded water molecules 401, 402, and 406 near Asp-85 and Arg-82.  相似文献   

7.
Lee SK  Lipscomb JD 《Biochemistry》1999,38(14):4423-4432
The effects of solvent pH and deuteration on the transient kinetics of the key intermediates of the dioxygen activation process catalyzed by the soluble form of methane monooxygenase (MMO) isolated from Methylosinus trichosporium OB3b have been studied. MMO consists of hydroxylase (MMOH), reductase, and "B" (MMOB) components. MMOH contains a carboxylate- and oxygen-bridged binuclear iron cluster that catalyzes O2 activation and insertion chemistry. The diferrous MMOH-MMOB complex reacts with O2 to form a diferrous intermediate compound O (O) and subsequently a diferric intermediate compound P (P), presumed to be a peroxy adduct. The O decay reaction was found to be pH-independent within error at 4 degrees C (kobs = 22 +/- 2 s-1 at pH 7.7; kobs = 26 +/- 2 s-1 at pH 7.0). In contrast, the P formation rate was found to decrease sharply with increasing pH to near zero at pH 8.6; the observed rate constants fit to a single deprotonation event with a pKa = 7.6 and a maximal formation rate at 4 degrees C of kP = 9.1 +/- 0.9 s-1 achieved near pH 6.5. The formation of P was slower than the disappearance of O, indicating that at least one other undetected intermediate (P) must form in between. P decays spontaneously to the highly chromophoric intermediate, compound Q (Q). The decay rate of P matched the formation rate of Q, and both rates decreased sharply with increasing pH to near zero at pH 8.6; the observed rate constants fit to a single deprotonation event with a pKa = 7.6 and a maximal formation rate at 4 degrees C of kQ = 2.6 +/- 0.1 s-1 achieved near pH 6.5. No pH dependence was observed for the decay of Q. The formation and decay rates of P and the formation rate of Q decreased linearly with mole fraction of D2O in the reaction mixture. Kinetic solvent isotope effect values of kH/kD = 1.3 +/- 0.1 (P formation) and kH/kD = 1.4 +/- 0.1 (P decay and Q formation) were observed at 5 degrees C. The linearity of the proton inventory plots suggests that only a single proton is transferred in the transition state of the formation reaction for each intermediate. If these protons are transferred to the bound oxygen molecule, as formally required by the reaction stoichiometry, the data are consistent with a model in which water is formed concurrently with the formation of the reactive bis mu-oxo-binuclear Fe(IV) species, Q.  相似文献   

8.
In wild-type bacteriorhodopsin light-induced proton release occurs before uptake at neutral pH. In contrast, in mutants in which R82 is replaced by a neutral residue (as in R82A and R82Q), only a small fraction of the protons is released before proton uptake at neutral pH; the major fraction is released after uptake. In R82Q the relative amounts of the two types of proton release, "early" (preceding proton uptake) and "late" (following proton uptake), are pH dependent. The main conclusions are that 1) R82 is not the normal light-driven proton release group; early proton release can be observed in the R82Q mutant at higher pH values, suggesting that the proton release group has not been eliminated. 2) R82 affects the pKa of the proton release group both in the unphotolyzed state of the pigment and during the photocycle. In the wild type (in 150 mM salt) the pKa of this group decreases from approximately 9.5 in the unphotolyzed pigment to approximately 5.8 in the M intermediate, leading to early proton release at neutral pH. In the R82 mutants the respective values of pKa of the proton release group in the unphotolyzed pigment and in M are approximately 8 and 7.5 in R82Q (in 1 M salt) and approximately 8 and 6.5 in R82K (in 150 mM KCl). Thus in R82Q the pKa of the proton release group does not decrease enough in the photocycle to allow early proton release from this group at neutral pH. 3) Early proton release in R82Q can be detected as a photocurrent signal that is kinetically distinct from those photocurrents that are due to proton movements from the Schiff base to D85 during M formation and from D96 to the Schiff base during the M-->N transition. 4) In R82Q, at neutral pH, proton uptake from the medium occurs during the formation of O. The proton is released during the O-->bacteriorhodopsin transition, probably from D85 because the normal proton release group cannot deprotonate at this pH. 5) The time constant of early proton release is increased from 85 microseconds in the wild type to 1 ms in R82Q (in 150 mM salt). This can be directly attributed to the increase in the pKa of the proton release group and also explains the uncoupling of proton release from M formation. 6) In the E204Q mutant only late proton release is observed at both neutral and alkaline pH, consistent with the idea that E204 is the proton release group. The proton release is concurrent with the O-->bacteriorhodopsin transition, as in R82Q at neutral pH.  相似文献   

9.
At pH >7, proteorhodopsin functions as an outward-directed proton pump in cell membranes, and Asp-97 and Glu-108, the homologues of the Asp-85 and Asp-96 in bacteriorhodopsin, are the proton acceptor and donor to the retinal Schiff base, respectively. It was reported, however [Friedrich, T. et al. (2002) J. Mol. Biol., 321, 821-838], that proteorhodopsin transports protons also at pH <7 where Asp-97 is protonated and in the direction reverse from that at higher pH. To explore the roles of Asp-97 and Glu-108 in the proposed pumping with variable vectoriality, we compared the photocycles of D97N and E108Q mutants, and the effects of azide on the photocycle of the E108Q mutant, at low and high pH. Unlike at high pH, at a pH low enough to protonate Asp-97 neither the mutations nor the effects of azide revealed evidence for the participation of the acidic residues in proton transfer, and as in the photocycle of the wild-type protein, no intermediate with unprotonated Schiff base accumulated. In view of these findings, and the doubts raised by absence of charge transfer after flash excitation at low pH, we revisited the question whether transport occurs at all under these conditions. In both oriented membrane fragments and liposomes reconstituted with proteorhodopsin, we found transport at high pH but not at low pH. Instead, proton transport activity followed the titration curve for Asp-97, with an apparent pK(a) of 7.1, and became zero at the pH where Asp-97 is fully protonated.  相似文献   

10.
The redox potentials of the oriented films of the wild-type, the E194Q-, E204Q- and D96N-mutated bacteriorhodopsins (bR), prepared by adsorbing purple membrane (PM) sheets or its mutant on a Pt electrode, have been examined. The redox potentials (V) of the wild-type bR were -470 mV for the 13-cis configuration of the retinal Shiff base in bR and -757 mV for the all-trans configuration in H(2)O, and -433 mV for the 13-cis configuration and -742 mV for the all-trans configuration in D(2)O. The solvent isotope effect (DeltaV=V(D(2)O)-V(H(2)O)), which shifts the redox potential to a higher value, originates from the cooperative rearrangements of the extensively hydrogen-bonded water molecules around the protonated C=N part in the retinal Schiff base. The redox potential of bR was much higher for the 13-cis configuration than that for the all-trans configuration. The redox potentials for the E194Q mutant in the extracellular region were -507 mV for the 13-cis configuration and -788 mV for the all-trans configuration; and for the E204Q mutant they were -491 mV for the 13-cis configuration and -769 mV for the all-trans configuration. Replacement of the Glu(194) or Glu(204) residues by Gln weakened the electron withdrawing interaction to the protonated C=N bond in the retinal Schiff base. The E204 residue is less linked with the hydrogen-bonded network of the proton release pathway compared with E194. The redox potentials of the D96N mutant in the cytoplasmic region were -471 mV for the 13-cis configuration and -760 mV for the all-trans configuration which were virtually the same as those of the wild-type bR, indicating that the D to N point mutation of the 96 residue had no influence on the interaction between the D96 residue and the C=N part in the Schiff base under the light-adapted condition. The results suggest that the redox potential of bR is closely correlated to the hydrogen-bonded network spanning from the retinal Schiff base to the extracellular surface of bR in the proton transfer pathway.  相似文献   

11.
Previous C13-NMR studies showed that two of the four internal aspartic acid residues (Asp-96 and Asp-115) of bacteriorhodopsin (bR) are protonated up to pH = 10, but no accurate pKa of these residues has been determined. In this work, infrared spectroscopy with the attenuated total reflection technique was used to characterize pH-dependent structural changes of ground-state, dark-adapted wild-type bacteriorhodopsin and its mutant (D96N) with aspartic acid-96 replaced by asparagine. Data indicated deprotonation of Asp-96 at high pH (pKa = 11.4 +/- 0.1), but no Asp-115 titration was observed. The analysis of the whole spectral region characteristic to complex conformational changes in the protein showed a more complicated titration with an additional pKa value (pKa1 = 9.3 +/- 0.3 and pKa2 = 11.5 +/- 0.2). Comparison of results obtained for bR and the D96N mutant of bR shows that the pKa approximately 11.5 characterizes not a direct titration of Asp-96 but a protein conformational change that makes Asp-96 accessible to the external medium.  相似文献   

12.
The proton pumping cycle of archaerhodopsin-2 (aR2) was investigated over a wide pH range and at different salt concentrations. We have found that two substates, which are spectroscopically and kinetically distinguishable, occur in the O intermediate. The first O-intermediate (O1) absorbs maximumly at ~580 nm, whereas the late O-intermediate (O2) absorbs maximumly at 605 nm. At neutral pH, O1 is in rapid equilibrium with the N intermediate. When the medium pH is increased, O1 becomes less stable than N and, in proportion to the amount of O1 in the dynamic equilibrium between N and O1, the formation rate of O2 decreases. By contrast, the decay rate of O2 increases ~100 folds when the pH of a low-salt membrane suspension is increased from 5.5 to 7.5 or when the salt concentration is increased to 2 M KCl. Together with our recent study on two substates in the O intermediate of bacteriorhodopsin (bR), the present study suggests that the thermally activated re-isomerization of the retinylidene chromophore into the initial all-trans configuration takes place in the O1-to-O2 transition; that is, O1 contains a distorted 13-cis chromophore. It is also found that the pKa value of the key ionizable residue (Asp101aR2, Asp96bR) in the proton uptake channel is elevated in the O1 state of aR2 as compared to the O1 state of bR. This implies that the structural property of O1 in the aR2 photocycle can be investigated over a wide pH range.  相似文献   

13.
As defined by hydropathy analysis, the membrane-spanning segments of the yeast plasma membrane H(+)-ATPase contain seven negatively charged amino acids (Asp and Glu) and four positively charged amino acids (Arg and His). To explore the functional role of these residues, site-directed mutants at all 11 positions and at Glu-288, located near the cytoplasmic end of M3, have been constructed and expressed in yeast secretory vesicles. Substitutions at four of the positions (Glu-129, Glu-288, Asp-833, and Arg-857) had no significant effect on ATP hydrolysis or ATP-dependent proton pumping, substitutions at five additional positions (Arg-695, His-701, Asp-730, Asp-739, and Arg-811) led to misfolding of the ATPase and blockage at an early stage of biogenesis, and substitutions of Asp-143 allowed measurable biogenesis but nearly abolished ATP hydrolysis and proton transport. Of greatest interest were mutations of Glu-703 in M5 and Glu-803 in M8, which altered the apparent coupling between hydrolysis and transport. Three Glu-703 mutants (E703Q, E703L, E703D) showed significantly reduced pumping over a wide range of hydrolysis values and thus appeared to be partially uncoupled. At Glu-803, by contrast, one mutant (E803N) was almost completely uncoupled, while another (E803Q) pumped protons at an enhanced rate relative to the rate of ATP hydrolysis. Both Glu-703 and Glu-803 occupy positions at which amino acid substitutions have been shown to affect transport by mammalian P-ATPases. Taken together, the results provide growing evidence that residues in membrane segments 5 and 8 of the P-ATPases contribute to the cation transport pathway and that the fundamental mechanism of transport has been conserved throughout the group.  相似文献   

14.
J M Sanz  P García  J L García 《Biochemistry》1992,31(36):8495-8499
The role of carboxylic amino acids Asp-9 and Glu-36 in the activity of CPL1 lysozyme was investigated by site-directed mutagenesis. The enzymatic activity of the single mutants D9E, D9N, D9H, D9K, D9A, E36D, E36Q, E36K, and E36A and of the double mutant D9A-E36A was analyzed using a highly sensitive radioactive assay. All mutants but D6K showed detectable activities. Interestingly, the mutants E36D and E36Q retained 67% and 37% activity, respectively. Amino acid replacements at position 9 turned out to be more critical for activity than at position 36. In analogy to the mechanism described for hen egg-white lysozyme, where the proton donor play a central role, we propose that, in the CPL1 lysozyme, Asp-9 might act as the proton donor for activation of the substrate, and Glu-36 could help in the stabilization of the intermediate oxocarbocation. The residual activity of lysozyme mutants lacking one or two of the acidic amino acids may be explained by the participation of a water molecule as proton donor and/or to electrostatic contributions in the active center stabilizing the transition state of the reaction. Our results are in agreement with the hypothesis that enzymes have been optimized during evolution from an ancestral protein able to bind more tightly the transition state of the substrate than the substrate itself, by the acquisition of amino acids serving a function in catalysis.  相似文献   

15.
Tyrosine-83, a residue which is conserved in all halobacterial retinal proteins, is located at the extracellular side in helix C of bacteriorhodopsin. Structural studies indicate that its hydroxyl group is hydrogen bonded to Trp189 and possibly to Glu194, a residue which is part of the proton release complex (PRC) in bacteriorhodopsin. To elucidate the role of Tyr83 in proton transport, we studied the Y83F and Y83N mutants. The Y83F mutation causes an 11 nm blue shift of the absorption spectrum and decreases the size of the absorption changes seen upon dark adaptation. The light-induced fast proton release, which accompanies formation of the M intermediate, is observed only at pH above 7 in Y83F. The pK(a) of the PRC in M is elevated in Y83F to about 7.3 (compared to 5.8 in WT). The rate of the recovery of the initial state (the rate of the O --> BR transition) and light-induced proton release at pH below 7 is very slow in Y83F (ca. 30 ms at pH 6). The amount of the O intermediate is decreased in Y83F despite the longer lifetime of O. The Y83N mutant shows a similar phenotype in respect to proton release. As in Y83F, the recovery of the initial state is slowed several fold in Y83N. The O intermediate is not seen in this mutant. The data indicate that the PRC is functional in Y83F and Y83N but its pK(a) in M is increased by about 1.5 pK units compared to the WT. This suggests that Tyr83 is not the main source for the proton released upon M formation in the WT; however, Tyr83 is involved in the proton release affecting the pK(a) of the PRC in M and the rate of proton transport from Asp85 to PRC during the O --> bR transition. Both the Y83F and the Y83N mutations lead to a greatly decreased functionality of the pigment at high pH because most of the pigment is converted into the inactive P480 species, with a pK(a) 8-9.  相似文献   

16.
Arg(82) is one of the four buried charged residues in the retinal binding pocket of bacteriorhodopsin (bR). Previous studies show that Arg(82) controls the pK(a)s of Asp(85) and the proton release group and is essential for fast light-induced proton release. To further investigate the role of Arg(82) in light-induced proton pumping, we replaced Arg(82) with histidine and studied the resulting pigment and its photochemical properties. The main pK(a) of the purple-to-blue transition (pK(a) of Asp(85)) is unusually low in R82H: 1.0 versus 2.6 in wild type (WT). At pH 3, the pigment is purple and shows light and dark adaptation, but almost no light-induced Schiff base deprotonation (formation of the M intermediate) is observed. As the pH is increased from 3 to 7 the M yield increases with pK(a) 4.5 to a value approximately 40% of that in the WT. A transition with a similar pK(a) is observed in the pH dependence of the rate constant of dark adaptation, k(da). These data can be explained, assuming that some group deprotonates with pK(a) 4.5, causing an increase in the pK(a) of Asp(85) and thus affecting k(da) and the yield of M. As the pH is increased from 7 to 10.5 there is a further 2.5-fold increase in the yield of M and a decrease in its rise time from 200 &mgr;s to 75 &mgr;s with pK(a) 9. 4. The chromophore absorption band undergoes a 4-nm red shift with a similar pK(a). We assume that at high pH, the proton release group deprotonates in the unphotolyzed pigment, causing a transformation of the pigment into a red-shifted "alkaline" form which has a faster rate of light-induced Schiff base deprotonation. The pH dependence of proton release shows that coupling between Asp(85) and the proton release group is weakened in R82H. The pK(a) of the proton release group in M is 7.2 (versus 5.8 in the WT). At pH < 7, most of the proton release occurs during O --> bR transition with tau approximately 45 ms. This transition is slowed in R82H, indicating that Arg(82) is important for the proton transfer from Asp(85) to the proton release group. A model describing the interaction of Asp(85) with two ionizable residues is proposed to describe the pH dependence of light-induced Schiff base deprotonation and proton release.  相似文献   

17.
Deng H  Callender R  Zhu J  Nguyen KT  Pei D 《Biochemistry》2002,41(33):10563-10569
Peptide deformylase (PDF) catalyzes the hydrolytic removal of the N-terminal formyl group from newly synthesized polypeptides in eubacteria and the organelles of certain eukaryotes. PDF is a novel class of amide hydrolase, which utilizes an Fe2+ ion to effect the hydrolysis of an amide bond. The ferrous ion is tetrahedrally coordinated by two histidines from a conserved HEXXH motif, a cysteine, and a water molecule. In this work, the function of the conserved glutamate (Glu-133 in Escherichia coli PDF) is evaluated by difference FTIR spectroscopic analysis of a Co(II)-substituted E. coli wild-type and E133D mutant PDF. At pH <6, the wild-type enzyme exhibited a relatively sharp C=O stretch band at 1742 cm(-1), which is assigned to the COOH group of Glu-133. The pH titration study and curve fitting to the data revealed a pK(a) of 6.0 for Glu-133 (in the presence of 500 mM NaCl). For the E133D mutant, which is only approximately 10-fold less active than the wild-type enzyme, a similar pH titration study of the Asp-133 C=O stretch band at 1740 cm(-1) revealed a pK(a) of 10.1. This unusually high pK(a) for a carboxyl group is likely due to its hydrophobic environment and electrostatic repulsion from the metal-bound hydroxide. These results argue that in the active form of E133D PDF, Asp-133 is protonated and therefore acts as a general acid during the decomposition of the tetrahedral intermediate by donating a proton to the leaving amide ion perhaps through a water molecule in the cavity created by the E133D mutation. In contrast, Glu-133 is deprotonated in the active form of wild-type PDF. We propose that Glu-133 acts as a proton shuttle accepting a proton from the metal-bound water and subsequently acts as a general acid during the decomposition of the tetrahedral intermediate.  相似文献   

18.
It has been found that the N(P, R)-type intermediate of the photocycle is formed in the Asp-96-->Asn mutant at acidic pH. Azide, which strongly activates the M decay in this mutant, allows the N intermediate to be shown also at neutral pH. Under these conditions mutant N decays in a pH-independent fashion. In the presence of azide, the H+ uptake by Asp-96-->Asn mutant bacteriorhodopsin follows the M decay, whereas the N decay occurs at a much slower rate. Two electrogenic stages have been shown to be associated with the M--->bR step in the Asp-96--->Asn mutant photocycle. The faster and slower stages correlate with the M--->N and N--->bR transitions, respectively. In the Asp-96--->Asn mutant, high concentrations of azide are found to increase the M decay rate up to the values higher than those in the wild-type protein, both with or without azide. Such an effect is absent for the Asp-96-->Glu mutant. The activation energies for M--->N and N--->bR transitions in the wild-type protein are equal to 18 and 19 kcal x mole-1, respectively. In the Asp-96-->Asn mutant without azide, the activation energy of the M decay is only 5 kcal x mole-1, whereas in the presence of azide in this mutant the activation energies for M and N decays are 8 and 9 kcal x mole-1, respectively. A scheme of events accompanying the Schiff base reprotonation during the photocycle is discussed.  相似文献   

19.
The photoreaction of the E194Q mutant of bacteriorhodopsin has been investigated at various pH values by time-resolved step-scan Fourier-transform infrared difference spectroscopy employing the attenuated total reflection technique. The difference spectrum at pH 8.4 is comparable to the N-BR difference spectra of the wild type with the remarkable exception that D85 is deprotonated. Since the retinal configuration is not perturbed by the E194Q mutation, it is concluded that there is no interaction of D85 with retinal during the lifetime of the N state. At pH 6, a consecutive state to the O intermediate is detected in which D212 is transiently protonated. The comparison with wild-type bacteriorhodopsin reveals that protonation of D212 represents an intermediate step during proton transfer from D85 to the proton release group in the final stage of the reaction cycle. The described effects are more pronounced in the E194Q mutant than in the E204Q mutant demonstrating different roles of these two glutamates/glutamic acids at least in the final stages of the catalytic cycle of bacteriorhodopsin.  相似文献   

20.
We recorded (13)C NMR spectra of [3-(13)C]Ala- and [1-(13)C]Val-labeled bacteriorhodopsin (bR) and a variety of its mutants, E9Q, E74Q, E194Q/E204Q (2Glu), E9Q/E194Q/E204Q (3Glu), and E9Q/E74Q/E194Q/E204Q (4Glu), to clarify contributions of the extracellular (EC) Glu residues to the conformation and dynamics of bR. Replacement of Glu-9 or Glu-74 and Glu-194/204 at the EC surface by glutamine(s) induced significant conformational changes in the cytoplasmic (CP) surface structure. These changes occurred in the C-terminal alpha-helix and loops, and also those of the EC surface, as viewed from (13)C NMR spectra of [3-(13)C]Ala- and [1-(13)C]Val-labeled proteins. Additional conformational changes in the transmembrane alpha-helices were induced as modified retinal-protein interactions for multiple mutants involving the E194Q/E204Q pair. Significant dynamic changes were induced for the triple or quadruple mutants, as shown by broadened (13)C NMR peaks of [1-(13)C]Val-labeled proteins. These changes were due to acquired global fluctuation motions of the order of 10(-4)-10(-5) s as a result of disorganized trimeric form. In such mutants (13)C NMR signals from Val residues of [1-(13)C]Val-labeled triple and quadruple mutants near the CP and EC surfaces (including 8.7-A depth from the surface) were substantially suppressed, as shown by comparative (13)C NMR studies with and without 40 micro M Mn(2+) ion. We conclude that these Glu residues at the EC surface play an important role in maintaining the native secondary structure of bR in the purple membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号