首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytotoxic therapeutic monoclonal antibodies (mAbs) often mediate target cell-killing by eliciting immune effector functions via Fc region interactions with cellular and humoral components of the immune system. Key functions include antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC). However, there has been increased appreciation that along with cell-killing functions, the induction of antibody-dependent cytokine release (ADCR) can also influence disease microenvironments and therapeutic outcomes. Historically, most Fc engineering approaches have been aimed toward modulating ADCC, ADCP, or CDC. In the present study, we describe an Fc engineering approach that, while not resulting in impaired ADCC or ADCP, profoundly affects ADCR. As such, when peripheral blood mononuclear cells are used as effector cells against mAb-opsonized tumor cells, the described mAb variants elicit a similar profile and quantity of cytokines as IgG1. In contrast, although the variants elicit similar levels of tumor cell-killing as IgG1 with macrophage effector cells, the variants do not elicit macrophage-mediated ADCR against mAb-opsonized tumor cells. This study demonstrates that Fc engineering approaches can be employed to uncouple macrophage-mediated phagocytic and subsequent cell-killing functions from cytokine release.  相似文献   

2.
Activation of macrophages (M phi) for host defense against tumor cells follows a sequence of priming events followed by an initiating stimulus that results in production and release of cytotoxic molecules that mediate target cell killing. We have developed a model to study specific macrophage cytotoxicity in vitro utilizing a cultured murine M phi cell line, J774. Specific cytotoxicity of cultured human gastrointestinal tumor cells is achieved in the presence of murine IgG2a monoclonal antibody (mAb) 17-1-A. The ability of these cells to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) is greatly enhanced following gamma-irradiation. ADCC can be demonstrated at mAb 17-1-A concentrations greater than or equal to 1 microgram/ml and effector/target cell ratios greater than or equal to 2. Exposure to doses greater than or equal to 10 Gy of gamma-irradiation increases ADCC threefold. Varying the duration from J774 M phi exposure to gamma-irradiation until addition of antibody-coated target cells showed that the primed state for ADCC is stable for at least 8 days but approximately 24 hr is required for complete development of the primed state. mAb-dependent target cell death begins 8 hr after addition of mAb and labeled target cells to primed effector cells and is complete by 24 hr. Incubation of unirradiated J774 M phi effector cells with recombinant murine interferon-gamma (rmIFN-gamma) also results in enhanced ADCC, but the extent of target cell killing achieved is less than that following priming by gamma-irradiation. Concomitant priming of gamma-irradiated J774 M phi with rmIFN-gamma increases the extent of ADCC. Further study of irradiated J774 cells may elucidate the molecular pathways utilized by M phi for achieving and maintaining the primed state for ADCC. Irradiated J774 cells will also provide a homogenous, stably primed cell type in which to examine the mechanism(s) of cytotoxicity employed by tumoricidal M phi.  相似文献   

3.
《MABS-AUSTIN》2013,5(3):748-754
Chronic lymphocytic leukemia (CLL) is common in both developed and developing nations where the need for inexpensive and convenient administration of therapy is apparent. Ocaratuzumab is a novel Fc-engineered humanized IgG1 anti-CD20 monoclonal antibody (mAb) designed for effective antibody-dependent cell-mediated cytotoxicity (ADCC) at very low concentrations that may facilitate sub-cutaneous (vs. intravenous) dosing. Here, we report ocaratuzumab’s potency against CLL cells.

In vitro assessment of ocaratuzumab’s direct cytotoxicity (DC), complement-dependent cytotoxicity (CDC), antibody-dependent cellular phagocytosis (ADCP), and ADCC was performed on CLL cells.

Ocaratuzumab induced DC, CDC, and ADCP similarly to rituximab or ofatumumab (anti-CD20 mAbs). However, ocaratuzumab showed an advantage in NK cell-mediated ADCC over these antibodies. In allogeneic ADCC, [E:T (effector:target) ratios = 25:1, 12:1, 6:1], ocaratuzumab (10 µg/mL) improved ADCC by ~3-fold compared with rituximab or ofatumumab (P < 0.001 all tested E:T ratios). Notably, the superiority of ocaratuzumab-induced ADCC was observed at low concentrations (0.1–10 ug/ml; P < 0.03; allogeneic assays). In extended allogeneic ADCC E:T titration, ocaratuzumab (0.1 µg/mL) demonstrated 19.4% more cytotoxicity than rituximab (E:T = 0.38:1; P = 0.0066) and 21.5% more cytotoxicity than ofatumumab (E:T = 1.5:1; P = 0.0015). In autologous ADCC, ocaratuzumab (10 µg/mL) demonstrated ~1.5-fold increase in cytotoxicity compared with rituximab or ofatumumab at all E:T ratios tested (E:Ts = 25:1,12:1,6:1; all P < 0.001). Obinutuzumab, a glyco-engineered anti-CD20 mAb, showed no improvement in ADCC activity compared with ocaratuzumab.

The enhanced ADCC of ocaratuzumab suggests that it may be effective at low concentrations. If supported by clinical investigation, this feature could potentially allow for subcutaneous dosing at low doses that could expand the potential of administering chemoimmunotherapy in developing countries.  相似文献   

4.
《MABS-AUSTIN》2013,5(5):1265-1273
We report a chimeric monoclonal antibody (mAb) directed to a neo-epitope that is exposed in the IgG lower hinge following proteolytic cleavage. The mAb, designated 2095–2, displays specificity for IdeS-generated F(ab’)2 fragments, but not for full-length IgG or for closely-related F(ab’)2 fragments generated with other proteases. A critical component of the specificity is provided by the C-terminal amino acid of the epitope corresponding to gly-236 in the IgG1 (also IgG4) hinge. By its ability to bind to IdeS-cleaved anti-CD20 mAb, mAb 2095–2 fully restored antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against WIL2-S cells to the otherwise inactive anti-CD20 IgG1 F(ab’)2 fragment. Similarly, 2095–2 reinstated ADCC against MDA-MB-231 cells to an anti-CD142 IgG1 F(ab’)2 fragment. mAb 2095–2 was also capable of eliciting both CDC and ADCC to IgG4 F(ab’)2 fragments, an IgG subclass that has weaker ADCC and CDC when intact relative to intact IgG1. The in vitro cell-based efficacy of 2095–2 was extended to the in vivo setting using platelets as a cell clearance surrogate. In a canine model, the co-administration of 2095–2 together with IdeS-generated, platelet-targeting anti-CD41/61 F(ab’)2 fragment not only restored platelet clearance, but did so at a rate and extent of clearance that exceeded that of intact anti-CD41/61 IgG at comparable concentrations. To further explore this unexpected amplification effect, we conducted a rat study in which 2095–2 was administered at a series of doses in combination with a fixed dose of anti-CD41/61 F(ab’)2 fragments. Again, the combination, at ratios as low as 1:10 (w/w) 2095–2 to F(ab’)2, proved more effective than the anti-CD41/61 IgG1 alone. These findings suggest a novel mechanism for enhancing antibody-mediated cell-killing effector functions with potential applications in pathologic settings such as tumors and acute infections where protease activity is abundant.  相似文献   

5.
Monocytes and natural killer (NK) cells are known to be important effector cell populations in mediating antibody-dependent cell-mediated cytotoxicity (ADCC). Purified monocyte and NK effector cell populations, from normal and colorectal cancer (CRC) patients, together with a number of murine (17-1A and 323/A3) and their chimaeric (c17-1A) or humanised (3622W94) equivalents, and chimaeric (c) SF25 were compared for their ability to mediate ADCC of colorectal tumour cells. The chimaeric and humanised antibodies were significantly better at mediating tumour lysis than their murine equivalents with all-effector populations. When effector cells from CRC patients were used the cSF25 antibody was significantly better than 3622W94 (P < 0.02) which, in turn, was significantly better than c17-1A (P < 0.03). Depletion of NK cells produced a decrease in specific tumour lysis with all antibodies. In addition a higher rate of NK cell death was observed in CRC patients during the assay than in normal controls. The chimaeric and humanised antibodies stained a similar percentage of the HT-29 target cells (>80%), but 3622W94 bound to significantly more cells from primary tumour biopsies than cSF-25 (P = 0.001). Together, the results suggest that NK cells are the most important effector cell type mediating ADCC in vitro, that there is some impairment of NK function in CRC patients, and that cSF25 is the most potent antibody. For use in vivo the anti-Ep-CAM antibody 3622W94 would appear to be the most suitable reagent for further study. Received: 3 June 1999 / Accepted: 22 July 1999  相似文献   

6.
We report a chimeric monoclonal antibody (mAb) directed to a neo-epitope that is exposed in the IgG lower hinge following proteolytic cleavage. The mAb, designated 2095–2, displays specificity for IdeS-generated F(ab’)2 fragments, but not for full-length IgG or for closely-related F(ab’)2 fragments generated with other proteases. A critical component of the specificity is provided by the C-terminal amino acid of the epitope corresponding to gly-236 in the IgG1 (also IgG4) hinge. By its ability to bind to IdeS-cleaved anti-CD20 mAb, mAb 2095–2 fully restored antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against WIL2-S cells to the otherwise inactive anti-CD20 IgG1 F(ab’)2 fragment. Similarly, 2095–2 reinstated ADCC against MDA-MB-231 cells to an anti-CD142 IgG1 F(ab’)2 fragment. mAb 2095–2 was also capable of eliciting both CDC and ADCC to IgG4 F(ab’)2 fragments, an IgG subclass that has weaker ADCC and CDC when intact relative to intact IgG1. The in vitro cell-based efficacy of 2095–2 was extended to the in vivo setting using platelets as a cell clearance surrogate. In a canine model, the co-administration of 2095–2 together with IdeS-generated, platelet-targeting anti-CD41/61 F(ab’)2 fragment not only restored platelet clearance, but did so at a rate and extent of clearance that exceeded that of intact anti-CD41/61 IgG at comparable concentrations. To further explore this unexpected amplification effect, we conducted a rat study in which 2095–2 was administered at a series of doses in combination with a fixed dose of anti-CD41/61 F(ab’)2 fragments. Again, the combination, at ratios as low as 1:10 (w/w) 2095–2 to F(ab’)2, proved more effective than the anti-CD41/61 IgG1 alone. These findings suggest a novel mechanism for enhancing antibody-mediated cell-killing effector functions with potential applications in pathologic settings such as tumors and acute infections where protease activity is abundant.  相似文献   

7.
Peripheral blood leukocytes (PBL), nonadherent lymphocytes, and adherent monocytes separated from freshly isolated blood of 15 dogs were analyzed for their ability to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) in combination with murine anti-tumor monoclonal antibodies (MAbs). Canine monocytes isolated from most donors by adherence to gelatin-fibronectin-coated plastic surface presented high ADCC activity against the canine lymphoma 17-71 tumor cell line in combination with antilymphoma MAbs 231 (IgG2a) and 234-2a (IgG2a). Canine lymphocytes generally showed lower ADCC activity than total PBL or monocytes. Canine PBL effector cells showed high ADCC activity against the human colorectal carcinoma SW948 cell line using the Y-6-specific MAb isotype switch variants 55-2 IgG3, 55-2 IgG1, 55-2 IgG2b, and 55-2 IgG2a. Analysis of the role of murine MAb isotypes on ADCC activity against tumors by canine cells using anti-human tumor class-switch variant MAbs and a panel of anti-canine lymphoma MAbs of different IgG subclass revealed the highest ADCC activity with MAbs of the IgG2a and IgG3 subclasses. IgG2a antilymphoma MAbs were also able to lyse tumor cells in complement-dependent cytotoxicity (CDC) assay. These results suggest the potential value of MAbs of IgG3 and IgG2a subclasses in immunotherapy against canine lymphoma.  相似文献   

8.
Summary Antibody-dependent cell-mediated cytotoxicity (ADCC) mediated by a murine monoclonal antibody against human colerectal carcinoma, antibody 19–9, with human effector cells was tested in 33 patients with various carcinomas, 16 patients with benign lesions, and 13 normal controls, using a 12-h 51Cr release assay using human colorectal cancer cells as targets. Peripheral blood mononuclear cells (PBM) from these groups of patients and normal controls achieved moderate levels of target cell lysis in the presence of the monoclonal antibody at the high effector to target cell ratio of 200:1. The ADCC activity of PBM in cancer patients was significantly higher than that in either normal persons or patients with benign lesions. Since the ADCC was shown to be mainly mediated by adherent monocytes in the PBM, ADCC activity of monocytes from cancer patients was compared to those from control groups at an effector to target cell ratio of 30:1. The results also showed that the lytic capacity of monocytes was significantly higher in cancer patients than that in the control populations.  相似文献   

9.
Antibodies can direct tumor cell lysis by activating complement-mediated and cell-mediated cytoxicities (antibody-dependent cell-mediated cytotoxicity, ADCC). Clinical translation of these effects into successful cancer therapy has been slow. Choosing an appropriate animal model to test new therapeutic strategies is difficult because of species differences in immunological effector functions. In previous work, we found that an unmodified anti-ganglioside mouse IgG3 monoclonal antibody (mAb), 3F8, could successfully treat clinical tumors in humans and experimental tumors in rats but not experimental tumors in mice. We explored the reasons for this species difference by performing in vitro antibody-dependent cytotoxicity assays comparing the potency of polymorphonuclear neutrophils (PMN), natural killer (NK) cells and complement from the three species: mouse, rat and human. 3F8-dependent complement-mediated cytotoxicity produced more than 70% specific release when human and rat sera were used and only 20% with mouse serum. PMN-mediated ADCC was 35%–70% with human effectors, 25%–60% with rat and undetectable with mouse. Human eosinophils did not contribute to this ADCC. Cytotoxicity utilizing interleukin-2-activated NK cells was antibody-independent in all three species but the specific release was 60%–70% with human and rat NK cells and 10% with mouse NK cells. These data suggest that, for mouse IgG3, the rat may provide a more relevant rodent model than the mouse for testing the in vivo antitumor effects of monoclonal antibodies. Received: 20 January 2000 / Accepted: 24 March 2000  相似文献   

10.
Standardized and biologically relevant potency assays are required by the regulatory authorities for the characterization and quality control of therapeutic antibodies. As critical mechanisms of action (MoA) of antibodies, the antibody-dependent cell-meditated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) must be characterized by appropriate potency assays. The current reference method for measuring cytotoxicity is the 51Cr-release method. However, radioactivity handling is difficult to implement in an industrial context because of environmental and operator protection constraints. Alternative non-radioactive methods suffer from poor validation performances and surrogate assays that measure FcγR-dependent functions do not comply with the regulatory requirement of biological relevance. Starting from these observations, we developed a non-radioactive luminescent method that is specific for target cell cytolysis. In adherent and non-adherent target cell models, the ADCC (using standardized effector cells) or CDC activities of rituximab, trastuzumab and adalimumab were compared in parallel using the 51Cr or luminescent methods. We demonstrated that the latter method is highly sensitive, with validation performances similar or better than the 51Cr method. This method also detected apoptosis following induction by a chemical agent or exposure to ultraviolet light. Moreover, it is more accurate, precise and specific than the concurrent non-radioactive calcein- and TR-FRET-based methods. The method is easy to use, versatile, standardized, biologically relevant and cost effective for measuring cytotoxicity. It is an ideal candidate for developing regulatory-compliant cytotoxicity assays for the characterization of the ADCC, CDC or apoptosis activities from the early stages of development to lot release.  相似文献   

11.
Summary The effects of human recombinant interleukin-6 (hrIL-6) on antibody-dependent cellular cytotoxicity (ADCC) activity mediated by human peripheral blood mononuclear cells (PMNC) were investigated. Human PMNC were preincubated for 24 h with various concentrations of hrIL-6 and were used as effector cells in a 4-h51Cr-release assay. The ability of hrIL-6 to augment ADCC was measured using anti-colorectal carcinoma mAbs D612, 17.1A and 31.1 (each directed against a distinct tumor antigen) and using three human colorectal carcinoma cell lines, LS-174T, WiDr and HT-29, as targets. A significant increase in ADCC activity was observed after PMNC were preincubated in 100–400 U/ml but not in lower concentrations of hrIL-6. Variations in activities of PMNC among donors were observed. Non-specific mAb showed no effect in augmenting ADCC activity. hrIL-6 treatment did not augment non-specific (non-mAb-mediated) cytotoxicity. The enhancement of ADCC activity was blocked by the addition of an antibody against hrIL-6 but not by an antibody to the IL-2 receptor (capable of blocking the induction of lymphokine-activated killer cell cytotoxicity by IL-2), suggesting that hrIL-6 augmentation of ADCC activity may not be mediated through IL-2. These results demonstrate that hrIL-6 augments ADCC activity of human PMNC using mAbs to human tumor antigens and human tumor cells as targets, suggesting a potential role for IL-6 in combination with anti-cancer antibodies for cancer immunotherapy.  相似文献   

12.
The incubation of murine splenocytes in recombinant interleukin 2 (RIL 2) gives rise to lymphokine-activated killer (LAK) cells that can lyse fresh, NK-resistant tumor cells but not normal cells in 4-hr 51Cr-release assays. Lysis by this IL 2-activated cell population was enhanced up to 100-fold by prior reaction of target cells with specific antisera reactive with antigens on the target cells. This antibody-dependent cellular cytotoxicity (ADCC) also resulted in lysis of fresh normal target cells, which are not usually susceptible to LAK lysis. The ADCC was evident after 24 hr of incubation of splenocytes in RIL 2, but peak lytic activity was reached after 3 to 4 days of incubation. The concentrations of RIL 2 needed for the in vitro activation of the effectors in order to attain maximal ADCC was between 100 and 3000 U/ml and parallel the IL 2 concentrations required to generate LAK cells. ADCC mediated by IL 2-activated splenocytes was completely blocked by anti-FcR monoclonal antibodies. Although antisera directed against MHC antigens were used in most experiments, anti-B16 monoclonal antibodies have also shown the ability to induce ADCC mediated by RIL 2-activated syngeneic and allogeneic cells. Treatment of the precursor splenocyte populations with anti-asialo GM1 and complement eliminated the direct LAK activity and the antibody-dependent cytotoxicity, suggesting that both direct and indirect tumor cell lysis may be caused by the same effector cell. ADCC mediated by LAK cell populations represents another possible mechanism for the in vivo therapeutic effects of these cells.  相似文献   

13.
《MABS-AUSTIN》2013,5(3):494-504
Cytotoxic therapeutic monoclonal antibodies (mAbs) often mediate target cell-killing by eliciting immune effector functions via Fc region interactions with cellular and humoral components of the immune system. Key functions include antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC). However, there has been increased appreciation that along with cell-killing functions, the induction of antibody-dependent cytokine release (ADCR) can also influence disease microenvironments and therapeutic outcomes. Historically, most Fc engineering approaches have been aimed toward modulating ADCC, ADCP, or CDC. In the present study, we describe an Fc engineering approach that, while not resulting in impaired ADCC or ADCP, profoundly affects ADCR. As such, when peripheral blood mononuclear cells are used as effector cells against mAb-opsonized tumor cells, the described mAb variants elicit a similar profile and quantity of cytokines as IgG1. In contrast, although the variants elicit similar levels of tumor cell-killing as IgG1 with macrophage effector cells, the variants do not elicit macrophage-mediated ADCR against mAb-opsonized tumor cells. This study demonstrates that Fc engineering approaches can be employed to uncouple macrophage-mediated phagocytic and subsequent cell-killing functions from cytokine release.  相似文献   

14.
The development of the immune response to xenogeneic tumor cells and the mechanism of potentiation of cell-mediated cytotoxicity (CMC) by xenoantiserum were investigated. The kinetics of potentiation of CMC resembled, both qualitatively and quantitatively, the kinetics of antibody-dependent cellular cytotoxicity (ADCC) of target cells treated with the same xenoantisera. Varying proportions of immune and nonimmune effector cells did not influence the amount of lysis of antibody-treated tumor cells. It would appear, therefore, that spleens from immunized animals contained cell populations that were capable of mediating both CMC and ADCC. Potentiation of CMC would appear to result from the preferential expression of ADCC effector cells; interaction of CMC effector cells was apparently hindered by the presence of antibody on the tumor cell surface. Immune complexes formed in antibody excess may also modify ADCC and the potentiation of CMC.  相似文献   

15.
Human peripheral blood lymphocytes (PBL) exhibited spontaneous cytotoxicity against OKT3 monoclonal antibody (mAb)-expressing murine hybridoma cells (OKT3 hybridomas). In contrast, other murine hybridomas expressing OKT4, OKT8, anti-HLA DR, and anti-HLA A, B, and C mAb were not lysed. PBL showed much lower levels of cytotoxicity (3 folds) against OKT3 hybridomas as compared with NK activity against the K562 targets. Lymph node (LN) cells exhibited the inverse relationship of cytotoxicity levels. The addition of OKT3 mAb to the effector cells totally blocked both the binding and the lysis of OKT3 hybridoma targets, indicating that the CD3 antigen on the effector cells may be involved in recognition of the targets. The addition of concanavalin (Con A) also inhibited the cytotoxicity of OKT3 hybridomas. OKT4 mAb-expressing hybridomas became susceptible to lysis after chemical attachment of OKT3 mAb with CrCl3. The kinetics of lysis of OKT3 hybridomas resembled that of NK activity. Both cytotoxicities were detectable after 1 to 2 hr and reached plateau levels by 4 to 6 hr. Effector cells responsible for lysis of OKT3 hybridomas expressed T3, T8, and Leu 7 antigens, but lacked T4 and Leu 11b antigens, and were sensitive to the treatment with L-leucine methyl ester. These results indicate that T3+, T8+, Leu 7+ and T4-, and Leu 11- granular lymphocytes have a spontaneous cytotoxic activity against OKT3 hybridomas which is different from classic NK activity. These findings may provide a method for the assessment of T-cell cytotoxicity mediated presumably by in vivo generated cytotoxic T lymphocytes in blood and the other immune organs.  相似文献   

16.
Although monoclonal antibodies (mAb) can elicit potent ADCC by human K lymphocytes, different mAb, even of the same antibody subclass or even of the same target antigen specificity, vary considerably as to their efficiency in eliciting ADCC. The extensive variability in ADCC efficiencies of murine IgG2a mAb is analyzed here. In cold-target inhibition experiments it was found that only cells coated with "ADCC-efficient" IgG2a mAb, and not "ADCC-inefficient" IgG2a mAb, inhibit K effector cell lysis of radiolabeled target cells by ADCC. This result indicates that the spatial orientation of the antibodies on the target cell membrane influences the net efficiency of ADCC reactions by affecting the efficiency of interaction between antibody and the Fc receptors (FcR) of K cells. It is proposed that a "favorable" orientation of antibodies on the target cell membrane is required for efficient ADCC reactions. This proposal is directly supported by the observation that one IgG2a mAb (20.8.4), which cross-reacts with several different H-2 alloantigens, was found to elicit efficient ADCC only when bound to certain of its possible target cell antigens. It was also observed in these studies that the organization of antibodies on a target cell membrane influences the net efficiency of ADCC reactions. It is proposed that a "favorable" antibody organization on the target cell membrane is also required for efficient ADCC reactions. This proposal is supported by the observation that certain antihuman beta 2m (anti-Hu beta 2m) IgG2a mAb, which elicit efficient ADCC lysis of human target cells, fail to elicit the lysis of murine cells having Hu beta 2m molecules coupled randomly to their external membrane surfaces. The differences in the way the Hu beta 2m was organized on the surfaces of the human cells and the murine-Hu beta 2m cell conjugates presumably caused differences in the way the bound antibodies were organized on the cell surfaces, which in turn resulted in the ADCC efficiency differences observed for the same mAb with the different target cell types. Because ADCC reactions appear to be sensitive to both the orientation and the organization of cell surface-bound antibodies, certain types of structural alterations or variations in the membrane molecules (relative to other neighboring structures on the target cell membrane) are potentially detectable by quantitative differences or variations in ADCC reactions.  相似文献   

17.
Murine, antihuman melanoma cell monoclonal antibody (mAb) 16.C8 was generated by fusing the murine myeloma cell line P3X63/Ag8.653 with splenocytes from a nude mouse bearing a human melanoma xenograft, after reconstitution with splenocytes from syngeneic immunocompetent BALB/c mice. The antibody reacted strongly with fresh human melanoma cells and exhibited preferential reactivity with established human melanoma and neuroectodermal tumor cell lines. Electrophoresis and Western blotting experiments indicated that 16.C8 is directed against a sialoglycoprotein antigen with a molecular weight of 110-120 kDa. mAb 16.C8 mediated lysis of melanoma cells in vitro in antibody-dependent cellular cytotoxicity assays using human mononuclear effector cells isolated from normal volunteers or malignant melanoma patients. In addition, the administration of mAb 16.C8 to nude mice bearing established human melanoma lung and liver metastases resulted in significant inhibition of tumor growth as shown by gross and histologic examination. In contrast, animals treated with Hanks' balanced salt solution or nonspecific immunoglobulin exhibited a large tumor burden. These results suggest that mAb 16.C8 may be of value in treatment of metastatic melanoma in humans.  相似文献   

18.
《MABS-AUSTIN》2013,5(5):826-836
ABSTRACT

Typical crystallizable fragment (Fc) glycans attached to the CH2 domain in therapeutic monoclonal antibodies (mAbs) are core-fucosylated and asialo-biantennary complex-type glycans, e.g., G2F (full galactosylation), G1aF (terminal galactosylation on the Man α1-6 arm), G1bF (terminal galactosylation on the Man α1-3 arm), and G0F (non-galactosylation). Terminal galactose (Gal) residues of Fc-glycans are known to influence effector functions such as antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity (CDC), but the impact of the G1F isomers (G1aF and G1bF) on the effector functions has not been reported. Here, we prepared four types of glycoengineered anti-CD20 mAbs bearing homogeneous G2F, G1aF, G1bF, or G0F (G2F mAb, G1aF mAb, G1bF mAb, or G0F mAb, respectively), and evaluated their biological activities. Interestingly, G1aF mAb showed higher C1q- and FcγR-binding activities, CDC activity, and FcγR-activation property than G1bF mAb. The activities of G1aF mAb and G1bF mAb were at the same level as G2F mAb and G0F mAb, respectively. Hydrogen–deuterium exchange/mass spectrometry analysis of dynamic structures of mAbs revealed the greater involvement of the terminal Gal residue on the Man α1-6 arm in the structural stability of the CH2 domain. Considering that mAbs interact with FcγR and C1q via their hinge proximal region in the CH2 domain, the structural stabilization of the CH2 domain by the terminal Gal residue on the Man α1-6 arm of Fc-glycans may be important for the effector functions of mAbs. To our knowledge, this is the first report showing the impact of G1F isomers on the effector functions and dynamic structure of mAbs.

Abbreviations: ABC, ammonium bicarbonate solution; ACN, acetonitrile; ADCC, antibody-dependent cell-mediated cytotoxicity; C1q, complement component 1q; CDC, complement-dependent cytotoxicity; CQA, critical quality attribute; Endo, endo-β-N-acetylglucosaminidase; FA, formic acid; Fc, crystallizable fragment; FcγR, Fcγ receptors; Fuc, fucose; Gal, galactose; GlcNAc, N-acetylglucosamine; GST, glutathione S-transferase; HER2, human epidermal growth factor receptor 2; HDX, hydrogen–deuterium exchange; HILIC, hydrophilic interaction liquid chromatography; HLB-SPE, hydrophilic-lipophilic balance–solid-phase extraction; HPLC, high-performance liquid chromatography; mAb, monoclonal antibody; Man, mannose; MS, mass spectrometry; PBS, phosphate-buffered saline; SGP, hen egg yolk sialylglycopeptides.  相似文献   

19.
Chronic lymphocytic leukemia (CLL) is common in both developed and developing nations where the need for inexpensive and convenient administration of therapy is apparent. Ocaratuzumab is a novel Fc-engineered humanized IgG1 anti-CD20 monoclonal antibody (mAb) designed for effective antibody-dependent cell-mediated cytotoxicity (ADCC) at very low concentrations that may facilitate sub-cutaneous (vs. intravenous) dosing. Here, we report ocaratuzumab’s potency against CLL cells. In vitro assessment of ocaratuzumab’s direct cytotoxicity (DC), complement-dependent cytotoxicity (CDC), antibody-dependent cellular phagocytosis (ADCP), and ADCC was performed on CLL cells. Ocaratuzumab induced DC, CDC, and ADCP similarly to rituximab or ofatumumab (anti-CD20 mAbs). However, ocaratuzumab showed an advantage in NK cell-mediated ADCC over these antibodies. In allogeneic ADCC, [E:T (effector:target) ratios = 25:1, 12:1, 6:1], ocaratuzumab (10 µg/mL) improved ADCC by ~3-fold compared with rituximab or ofatumumab (P &lt; 0.001 all tested E:T ratios). Notably, the superiority of ocaratuzumab-induced ADCC was observed at low concentrations (0.1–10 ug/ml; P &lt; 0.03; allogeneic assays). In extended allogeneic ADCC E:T titration, ocaratuzumab (0.1 µg/mL) demonstrated 19.4% more cytotoxicity than rituximab (E:T = 0.38:1; P = 0.0066) and 21.5% more cytotoxicity than ofatumumab (E:T = 1.5:1; P = 0.0015). In autologous ADCC, ocaratuzumab (10 µg/mL) demonstrated ~1.5-fold increase in cytotoxicity compared with rituximab or ofatumumab at all E:T ratios tested (E:Ts = 25:1,12:1,6:1; all P &lt; 0.001). Obinutuzumab, a glyco-engineered anti-CD20 mAb, showed no improvement in ADCC activity compared with ocaratuzumab. The enhanced ADCC of ocaratuzumab suggests that it may be effective at low concentrations. If supported by clinical investigation, this feature could potentially allow for subcutaneous dosing at low doses that could expand the potential of administering chemoimmunotherapy in developing countries.  相似文献   

20.
A thymic lymphoblastoid cell line derived from a New Zealand Black mouse produces murine leukemia virus (MuLV) and was used as a target in model systems for the in vitro study of antibody-dependent cellular cytotoxicity (ADCC). Several human lymphoblastoid cell lines were investigated as potential effector cells. The most promising (Raji cells) bound to antibody-coated target cells but caused only modest levels of ADCC at 25:1 effector-to-target cell ratio with substantial lysis in the absence of antiserum. Human peripheral lymphocytes were active as effector cells in ADCC at a 5:1 ratio and produced no lysis in the absence of antibody. These cells were used to demonstrate that high dilutions of rabbit antisera to MuLV antigens p30, p15, p12, and p10 were capable of mediating lysis of MuLV-producing target cells but not of a virus-negative murine cell line. A murine antiserum to Thy 1.2 and three caprine antisera to MuLV antigens that were active in complement-mediated cytotoxicity functioned poorly in inducing ADCC; however, rabbit antisera to similar antigens were 16- to 512-fold more efficient in cell-mediated than in complement lysis. The inefficiency of goat antisera was not due to shedding of cell surface antigens or generation of blocking factors but rather to lack of lytic interaction of antibody-coated targets with the effector cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号