首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The effect of cholesterol diet on the rate of mevalonic acid biosynthesis from 1-14C acetyl-CoA, 2-14C malonyl-CoA and the incorporation of these substrates into sterols and bile acids in rabbit liver were studied. Simultaneously, the activities of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase) and acetyl-CoA carboxylase and the biosynthesis of fatty acids from acetyl-CoA and malonyl-CoA were measured. Hypercholesterolemia was found to be concomitant with the inhibition of acetyl-CoA carboxylase activity only in cell-free (700 g) and mitochondrial fractions and slightly decreased the incorporation of acetyl-CoA and malonyl-CoA into fatty acids in the postmitochondrial fraction. The HMG-CoA reductase activity in all subcellular fractions except for the postmicrosomal one was inhibited under these conditions. A significant decrease of acetyl-CoA incorporation and an increase in malonyl-CoA incorporation into mevalonic acid in all liver fractions except for microsomal one were observed in rabbits with hypercholesterolemia. These data provide evidence for the existence of two pathways of mevalonic acid synthesis from the above-said substrates that are differently sensitive to cholesterol. Cholesterol feeding resulted in a decreased synthesis of the total unsaponified fraction including cholesterol from acetyl-CoA, malonyl-CoA and mevalonic acid. The rate of incorporation of these substrates into lanosterol was unchanged. All the indicated substrates (acetyl-CoA, malonyl-CoA, mevalonic acid) are precursors of bile acid synthesis in rabbit liver. Cholesterol feeding and the subsequent development of hypercholesterolemia resulted in bile acid synthesis stimulation, preferentially in the formation of the cholic + deoxycholic acids from these precursors.  相似文献   

2.
Biosynthesis of mevalonic acid (MVA), total formation of 14CO2 from [1,3-14C]malonyl-CoA and the activity of malonyl-CoA decarboxylase in subcellular fractions of rat liver were studied. The dependence of the rate of MVA biosynthesis on malonyl-CoA concentration was found to be linear both in 140,000 g supernatant and solubilized microsomal fractions. It was shown that in a composite system (140,000 g supernatant fraction added to washed microsomes, 10 : 1) the optimal concentration ratio for the substrates of MVA biosynthesis (malonyl-CoA and acetyl-CoA) is 1 to 2. In the absence of acetyl-CoA decarboxylation of [1,3-14C]malonyl-CoA was prevalent. In all subcellular fractions studied decarboxylation of [1,3-14C]malonyl-CoA prevailed over its incorporation into MVA, total non-saponified lipid fraction and fatty acids. The degree of malonyl-CoA, decarboxylation was not correlated with the rate of its incorporation into MVA, i. e. the increase in the 14CO2 formation was not accompanied by stimulation of [1,3-14C]malonyl-CoA incorporation either into MVA or into total non-saponified lipid fractions. The incorporation of [1-14C]acetyl-CoA into MVA under the same conditions was considerably lower than that of [1,3-14C]malonyl-CoA. In all subcellular fractions under study the activity of malonyl-CoA decarboxylase was found. The experimental data suggest that a remarkable part of malonyl-CoA is incorporated into MVA without preliminary decarboxylation. A possible role of malonyl-CoA decarboxylase as an enzyme which protects the cell against accumulation of malonyl-CoA and its immediate metabolites -- malonate and methylmalonyl-CoA is disucssed.  相似文献   

3.
Assay conditions are worked out for determination of activity of beta-hydroxy-beta-methylglutaryl-CoA reductase (HMG-CoA reductase) in 140.000 g supernatant fraction of the rat liver. Some kinetic properties of the enzyme are studied: the activity dependency on the incubation time, protein concentration, pH, glutathione, dithiothreitol and HMG-CoA contents in the incubation medium. The effect of Triton WR 1339 on the activity of HMG-CoA reductase in the liver 140.000 g supernatant and microsomal fractions is comparatively studied. Diurnal activity variations of soluble and microsomal enzymes are also investigated. It is suggested that the rat liver HMG-CoA reductase in the 140.000 g supernatant fraction is not identical to the enzyme located in the microsomal fraction.  相似文献   

4.
The biosynthesis of C27 sterols (used as a generic term for 3 β-hydroxysterols containing 27 carbon atoms) from squalene and lanosterol, of cholesterol from desmosterol, and of lanosterol from squalene by microsomal fractions from adult rat heart, kidney, and brain was investigated. These conversions required the presence of 105,000g supernatant fraction. Heat treatment of the supernatant fractions resulted in a significant loss of their capacity to stimulate the conversion of squalene to sterols, but the capacity to stimulate conversion of lanosterol to C27 sterols and desmosterol to cholesterol was unaffected. The stimulatory activity (for the conversion of all three substrates) of both the heated and unheated supernatant fractions was lost on treatment with trypsin. Thus the soluble fraction appears to contribute at least two essential protein components for the overall conversion of squalene to cholesterol; one a heat labile protein, which functions in the squalene to lanosterol sequence, and the other a heat-stable protein, which is operative in the pathway between lanosterol and cholesterol. Hepatic supernatant factors required for cholesterol synthesis by liver microsomal enzymes function with heart, kidney, and brain microsomal enzymes in stimulating sterol synthesis from squalene and sterol precursors. Moreover, heart, kidney, and brain supernatant fractions prepared in 100 mm phosphate buffer stimulated cholesterol synthesis from squalene and other sterol precursors by liver microsomes. The supernatant fractions of the extrahepatic tissues prepared in 20 mm phosphate buffer lacked the ability to stimulate the biosynthesis of lanosterol from squalene by liver microsomes but were able to stimulate the conversion of lanosterol to C27 sterols or conversion of desmosterol to cholesterol. These findings indicate that the heat-stable protein factor present in the supernatant fractions from extrahepatic tissues is perhaps identical to that in liver, but that the heat-labile factor in extrahepatic tissues, which catalyzes the cyclization of squalene to lanosterol, differs in some respect from that in liver.  相似文献   

5.
Effect of citrate on acetyl-CoA incorporation into mevalonic acid, sterols and fatty acids after preliminary incubation of rat liver extracts under conditions optimal for acetyl-CoA carboxylase activation, was studied. 30 min preincubation with the citrate at 37 degrees C results in a 2--3-fold stimulation of the mevalonic acid biosynthesis from acetyl-CoA in the microsomal and soluble (140 000 g) fraction, and in that of sterols precipitated by digitonin or isolated by TLC in the mitochondria--free fraction. 2-14C-malonyl-CoA incorporation into the mevalonic acid and sterols and biosynthesis of sterols from 2-14C-mevalonic acid were not stimulated under those conditions. A correlation was shown to exist between the activity of acetyl-CoA carboxylase and the rate of acetyl-CoA incorporation into mevalonate and sterols; the activity of beta-hydroxy-beta-methylglutaryl-CoA reductase, limiting the rate of the sterol biosynthesis, was not changed. The stimulating effect of citrate was found to depend on the concentration of acetyl-CoA and NADPH in the medium. The data obtained suggest that the mevalonic acid biosynthesis in rat liver may occur in the presence of acetyl-CoA carboxylase through the formation of malonyl-CoA.  相似文献   

6.
The lanosterol 14 alpha-methyl demethylase inhibitors miconazole and ketoconazole have been used to assess their effects upon cholesterol biosynthesis in cultured Chinese hamster ovary cells. In Chinese hamster ovary cells treated with either agent, an initial accumulation of lanosterol and dihydrolanosterol has been observed. At elevated concentrations, however, ketoconazole, but not miconazole, causes the preferential accumulation of 24,25-epoxylanosterol and squalene 2,3:22,23-dioxide. These metabolites accumulate at the expense of lanosterol, thereby demonstrating a second site of inhibition for ketoconazole in the sterol biosynthetic pathway. Both demethylase inhibitors produced a biphasic modulation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme in the cholesterol biosynthetic pathway. The biphasic modulation is characterized by low levels of the drugs suppressing HMG-CoA reductase activity which is restored to either control or above control values at higher drug concentrations. This modulatory effect of the lanosterol demethylase inhibitors upon HMG-CoA reductase was not observed in the lanosterol 14 alpha-methyl demethylase-deficient mutant AR45. Suppression of HMG-CoA reductase activity is shown to be due to a decrease in the amount of enzyme protein consistent with a steroidal regulatory mechanism. Collectively, the results establish that lanosterol 14 alpha-methyl demethylation, but not 24,25-epoxylanosterol formation, is required to suppress HMG-CoA reductase in the manner described by lanosterol demethylase inhibitors.  相似文献   

7.
Administration of estradiol-17 beta to male Xenopus laevis evokes the proliferation of the endoplasmic reticulum and the Golgi apparatus and the synthesis and secretion by the liver of massive amounts of the egg yolk precursor phospholipoglycoprotein, vitellogenin. We have investigated the effects of estrogen on three key regulatory enzymes in lipid biosynthesis, 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase, the major regulatory enzyme in cholesterol and isoprenoid synthesis, and acetyl-CoA carboxylase and fatty acid synthetase, which regulate fatty acid biosynthesis. HMG-CoA reductase activity and cholesterol synthesis increase in parallel following estrogen administration. Reductase activity in estrogen stimulated Xenopus liver cells peaks at 40-100 times the activity observed in control liver cells. The increased rate of reduction of HMG-CoA to mevalonic acid is not due to activation of pre-existing HMG-CoA reductase by dephosphorylation, as the fold induction is unchanged when reductase from control and estrogen-stimulated animals is fully activated prior to assay. The estrogen-induced increase of fatty acid synthesis is paralleled by a 16- to 20-fold increase of acetyl-CoA carboxylase activity, indicating that estrogen regulates fatty acid synthesis at the level of acetyl-CoA carboxylase. Fatty acid synthetase activity was unchanged during the induction of fatty acid biosynthesis by estrogen. The induction of HMG-CoA reductase and of acetyl-CoA carboxylase by estradiol-17 beta provides a useful model for regulation of these enzymes by steroid hormones.  相似文献   

8.
The capacity of liver soluble fraction to stimulate hepatic microsomal conversion of squalene to cholesterol is lost on treatment with trypsin. Heat treatment of the soluble fraction results in a selective loss of its capacity to stimulate conversion of squalene to cholesterol; the ability to stimulate conversion of lanosterol and desmosterol to cholesterol is however retained. It is proposed that the liver soluble fraction contains at least two noncatalytic proteins, one heat-labile and the other heat-stable, which participate in microsomal cholesterol synthesis. The heat-labile protein mediates the conversion of squalene to lanosterol while the heat-stable protein is needed for the conversion of lanosterol and other sterol precursors to cholesterol.  相似文献   

9.
Squalene monooxygenase is a microsomal enzyme that catalyzes the conversion of squalene to 2,3(s)-oxidosqualene, the immediate precursor to lanosterol in the cholesterol biosynthesis pathway. Unlike other flavoprotein monooxygenases that obtain electrons directly from NAD(P)H, squalene monooxygenase requires a redox partner, and for many years it has been assumed that NADPH-cytochrome P450 reductase is this requisite redox partner. However, our studies with hepatic cytochrome P450-reductase-null mice have revealed a second microsomal reductase for squalene monooxygenase. Inhibition studies with antibody to P450 reductase indicate that this second reductase supports up to 40% of the monooxygenase activity that is obtained with microsomes from normal mice. Studies carried out with hepatocytes from CPR-null mice demonstrate that this second reductase is active in whole cells and leads to the accumulation of 24-dihydrolanosterol; this lanosterol metabolite also accumulates in the livers of CPR-null mice, indicating that cholesterol synthesis is blocked at lanosterol demethylase, a cytochrome P450.  相似文献   

10.
Squalene synthase (SS) is the first committed enzyme for cholesterol biosynthesis, located at a branch point in the mevalonate pathway. To examine the role of SS in the overall cholesterol metabolism, we transiently overexpressed mouse SS in the livers of mice using adenovirus-mediated gene transfer. Overexpression of SS increased de novo cholesterol biosynthesis with increased 3-hydroxy-3-methyglutaryl-CoA (HMG-CoA) reductase activity, in spite of the downregulation of its own mRNA expression. Furthermore, overexpression of SS increased plasma concentrations of LDL, irrespective of the presence of functional LDL receptor (LDLR). Thus, the hypercholesterolemia is primarily caused by increased hepatic production of cholesterol-rich VLDL, as demonstrated by the increases in plasma cholesterol levels after intravenous injection of Triton WR1339. mRNA expression of LDLR was decreased, suggesting that defective LDL clearance contributed to the development of hypercholesterolemia. Curiously, the liver was enlarged, with a larger number of Ki-67-positive cells. These results demonstrate that transient upregulation of SS stimulates cholesterol biosynthesis as well as lipoprotein production, providing the first in vivo evidence that SS plays a regulatory role in cholesterol metabolism through modulation of HMG-CoA reductase activity and cholesterol biosynthesis.  相似文献   

11.
Activities of 3-hydroxy-3-methylglutaryl-CoA reductase, squalene synthetase and cholesterol 7 alpha-hydroxylase, measured in liver microsomal preparations from domestic swine between birth and adolescence, correlated strongly in individual animals. A synchronous increase was observed between 4 and 6 weeks after birth, i.e., immediately after weaning. Rise in activity was highest for HMG-CoA reductase (30-fold), and smallest for squalene synthetase (5-fold). In pubertal pigs (16 to 30 weeks old), activities of these enzymes had the same low values as in suckling piglets. The increase of both HMG-CoA reductase and squalene synthetase activities may be caused by the shift from high-cholesterol milk intake to a chow diet with low-cholesterol content. The rise in cholesterol 7 alpha-hydroxylase activity might be due to other dietary or hormonal factors.  相似文献   

12.
Incorporation of malonyl-CoA or acetyl-CoA is studied in mouse brain mitochondrial fatty acids. Rupture of mitochondria is necessary ; Triton X-100 gives the best result. Other detergents or sonication are of lesser efficiency. Cofactor requirements have been studied : NADH and NADPH have been tested ; ATP increases biosynthesis and CoA causes an inhibition. Two systems of biosynthesis are involved : -- One is a de novo system using malonyl-CoA. Malonyl-CoA alone is incorporated and synthesizes mainly C16, indicating the existence of a malonly-CoA decarboxylase although elongation of short chain fatty acids cannot be excluded. Addition of acetyl-CoA increases the biosynthesis and palmityl-CoA when added causes an inhibition. -- The other system, using acetyl-CoA, elongates exogenous palmityl-CoA ; endogenous acyl-CoAs are not elongated by acetyl-CoA. All these results are confirmed by radiogas chromatographic studies of the reactions products.  相似文献   

13.
A calcium-activated and phospholipid-dependent protein kinase (protein kinase C) catalyzes the phosphorylation of both insoluble microsomal (Mr approximately 100,000) and purified soluble (Mr = 53,000) 3-hydroxy-3-methylglutaryl coenzyme A reductase. The phosphorylation and concomitant inactivation of enzymic activity of HMG-CoA reductase was absolutely dependent on Ca2+, phosphatidylserine, and diolein. Dephosphorylation of phosphorylated HMG-CoA reductase was associated with the loss of protein bound radioactivity and reactivation of enzymic activity. Maximal phosphorylation of purified HMG-CoA reductase was associated with the incorporation of 1.05 +/- 0.016 mol of phosphate/mol of native form of HMG-CoA reductase (Mr approximately 100,000). The apparent Km for purified HMG-CoA reductase and histone H1 was 0.08 mg/ml, and 0.12 mg/ml, respectively. The tumor-promoting phorbol ester, phorbol 12-myristate 13-acetate stimulated the protein kinase C-catalyzed phosphorylation of HMG-CoA reductase. Increased phosphorylation of HMG-CoA reductase by phorbol 12-myristate 13-acetate suggests a possible in vivo protein kinase C-mediated mechanism for the short-term regulation of HMG-CoA reductase activity. The identification of the protein kinase C system in addition to the reductase kinase-reductase kinase kinase bicyclic cascade systems for the modulation of the enzymic activity of HMG-CoA reductase may provide new insights into the molecular mechanisms involved in the regulation of cholesterol biosynthesis.  相似文献   

14.
The in vivo mevalonate incorporation into total nonsaponifiable lipids by chick liver was minimal after hatching and drastically increased between 1-5 days. The hepatic synthesis of different cholesterol precursors emerged sequentially after hatching. Between 1-5 days increased strongly the conversion of mevalonate into squalene and also the formation of oxygenated lanosterol derivatives from squalene. The conversion of squalene became completely active at day 8. Cholesterol formation from lanosterol derivatives was completely activated between 8-11 days. Results in this paper demonstrate for the first time the accumulation of a fraction of nonsaponifiable lipids identified as lanosterol derivatives and cholesterol precursors formed from [5-14C]mevalonate in experiments carried out in vivo. Postnatal evolution of these oxysterols may explain the great increase of 3-hydroxy-3-methylglutaryl-CoA reductase activity found in chick liver between 5-11 days, simultaneous or posterior to the diminution of the oxygenated cholesterol precursors.  相似文献   

15.
Cholesterol biosynthesis was studied in rat liver subcellular fractions incubated with dl-[2-(14)C]mevalonic acid under gas phases consisting of either N(2)+O(2) (90:10) or CO+O(2) (90:10). CO inhibits cholesterol biosynthesis from [2-(14)C]mevalonic acid and results in a large accumulation of radioactive 4,4-dimethyl sterols. Separation of the components of the 4,4-dimethyl sterol fraction showed that lanosterol and dihydrolanosterol are the major components that accumulate during cholesterol biosynthesis in an atmosphere containing CO, whereas 14-demethyl-lanosterol and 14-demethyldihydrolanosterol are the major components of the much less intensely radioactive 4,4-dimethyl sterol fraction isolated from incubations with N(2)+O(2) as the gas phase. The identities of lanosterol, dihydrolanosterol and 14-demethyldihydrolanosterol were confirmed by both radiochemical and physicochemical methods, including g.l.c. and combined g.l.c.-mass spectrometry. CO therefore results in a qualitative as well as a quantitative difference in the 4,4-dimethyl sterol fraction which arises during cholesterol biosynthesis from mevalonic acid. The specific radioactivity of the [(14)C]lanosterol biosynthesized in the presence of CO was lower than that of its companion, [(14)C]dihydrolanosterol. The relative amounts of 4,4-dimethyl-Delta(24)-sterols and 4,4-dimethyl-24,25-dihydrosterols present in each type of incubation suggest that enzymic reduction of the sterol side chain occurs predominantly at a stage after that of lanosterol.  相似文献   

16.
The incorporation of [14C]lysine into various brain proteins was studied. The proteins of different areas of the auditory system and cortical subcellular fractions were analysed using a disc electrophoretic technique that allows both protein and radioactivity assays along the gels. The highest level of incorporation was found in the mid brain nuclei, particularly the inferior colliculus, and was lowest in the auditory cortex proteins. This was true for both saline soluble proteins and proteins solubilized by Triton X-100 treatment. Of the subcellular fractions, the highest level of activity was found in the microsomal fraction. Considerable radioactivity was also found in the proteins isolated from the synaptosome-rich fraction. Of particular interest in this fraction was a slow migrating protein band which was soluble in Triton X-100, had a high specific activity, and appeared to be synaptosome specific. These observations are in concurrence with the hypothesis that the nerve ending contains protein synthesizing machinery.  相似文献   

17.
Elongation of fatty acids by microsomal fractions obtained from rat brain was measured by the incorporation of [2-14C]malonyl-CoA into fatty in the presence of palmitoyl-CoA or stearoyl-CoA. 2. Soluble and microsomal fractions were prepared from 21-day-old rats; density gradient centrifugation demonstrated that the stearoyl-CoA elongation system was localized in the microsomal fraction whereas fatty acid biosynthesis de novo from acetyl-CoA occurred in the soluble fraction. The residual activity de novo in the microsomal fraction was attributed to minor contamination by the soluble fraction. 3. The optimum concentration of [2-14C]malonyl-CoA for elongation of fatty acids was 25 mum for palmitoyl-CoA or stearoyl-CoA, and the corresponding optimum concentrations for the two primer acyl-CoA esters were 8.0 and 7.2 muM respectively. 4. Nadph was the preferred cofactor for fatty acid formation from palmitoyl-CoA or stearoyl-CoA, although NADH could partially replace it. 5. The stearoyl-CoA elongation system required a potassium phosphate buffer concentration of 0.075M for maximum activity; CoA (1 MUM) inhibited this elongation system by approx. 30%. 6. The fatty acids formed from malonyl-CoA and palmitoyl-CoA had a predominant chain length of C18 whereas stearoyl-CoA elongation resulted in an even distribution of fatty acids with chain lengths of C20, C22 and C24. 7. The products of stearoyl-CoA elongation were identified as primarily unesterified fatty acids. 8. The developmental pattern of fatty acid biosynthesis by rat brain microsomal preparations was studied and both the palmitoyl-CoA and stearoyl-CoA elongation systems showed large increases in activity between days 10 and 18 after birth.  相似文献   

18.
Triton WR 1339 was found to contain a high molecular weight fraction with globular polymers of ˜ 105 D and a diameter of ˜80 Å (‘macrotriton’) and a low molecular weight fraction (‘microtriton’). The intracellular distribution of subfractions of [3H]Triton WR 1339 was followed by cell fractionation and by gel chromatography techniques in parallel with electron microscopy and autoradiography. Macrotriton is selectively stored in lysosomes and all evidence supports a slowly working endocytotic uptake mechanism. Microtriton permeates quickly into the cells and is rapidly and efficiently released into the bile. The data presented suggest some intracellular leaking of lysosomal contents due to the action of Triton WR 1339.  相似文献   

19.
Lipid metabolism in a concanavalin A-resistant, glycosylation-defective mutant cell line was investigated by comparing growth properties, lipid composition, and lipid biosynthesis in wild-type (WT), mutant (CR-7), and revertant (RCR-7) cells. In contrast to WT and RCR-7, the mutant was auxotrophic for cholesterol, but mevalonolactone did not restore growth on lipoprotein-deficient medium. The use of R-[2-14C]mevalonolactone revealed that CR-7 was deficient in the conversion of lanosterol to cholesterol. Total lipid and phospholipid content and composition were similar in all three cell lines, but CR-7 displayed subnormal content and biosynthesis of cholesterol and unsaturated fatty acids. The mutant was hypersensitive to compactin and was unable to upregulate either 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity or the binding and internalization of 125I-labeled low-density lipoprotein (LDL) in response to lipoprotein deprivation. HMG-CoA reductase activity in all three cell lines showed similar kinetics and phosphorylation status, and the binding kinetics and degradation of 125I-LDL were also similar, suggesting that CR-7 possesses kinetically normal reductase and LDL binding sites, but is deficient in their coordinate regulation. Tunicamycin (1-2 micrograms/ml) strongly and reversibly suppressed reductase activity in WT and RCR-7. CR-7 was resistant to this inhibitor. In WT cells this suppressive effect was accompanied by inhibition of 3H-labeled mannose incorporation into cellular protein, but 3H-labeled leucine incorporation was unaffected. Immunotitration of HMG-CoA reductase activity in extracts of WT cells, cultured in the presence and absence of tunicamycin, showed that suppression of reductase activity reflected the presence of reduced amounts of reductase protein, implying that glycosylation plays an important role in the coordinate regulation of HMG-CoA reductase activity and LDL binding.  相似文献   

20.
3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase), the rate-limiting enzyme in the biosynthesis of cholesterol and isoprenoids, is subject to rapid degradation which is regulated by mevalonate (MVA)-derived metabolic products. HMG-CoA reductase is an integral membrane protein of the endoplasmic reticulum, the largest nonmitochondrial pool of cellular Ca2+. To assess the possible role of Ca2+ in the regulated degradation of HMG-CoA reductase, we perturbed cellular Ca2+ concentration and followed the fate of HMG-CoA reductase and of HMGal, a fusion protein consisting of the membrane domain of HMG-CoA reductase and the soluble bacterial enzyme beta-galactosidase. The degradation of HMGal mirrors that of HMG-CoA reductase, demonstrating that the membrane domain of HMG-CoA reductase is sufficient to confer regulated degradation (Skalnik, D.G., Narita, H., Kent, C., and Simoni, R.D. (1988) J. Biol. Chem. 263, 6836-6841; Chun, K.T., Bar-Nun, S., and Simoni, R.D. (1990) J. Biol. Chem. 265, 22004-22010). In this study we show that the MVA-dependent accelerated rates of degradation of HMG-CoA reductase and HMGal in cells maintained in Ca(2+)-free medium are 2-3-fold slower than the rate of degradation in cells grown in high (1.8-2 mM) Ca2+ concentration. This effect is reversed upon addition of Ca2+ to the medium. Furthermore, when cells maintained in high Ca2+ are treated with 1 microM ionomycin, the MVA-dependent accelerated degradation of HMG-CoA reductase and HMGal is also reduced about 2-3-fold. This inhibition is not due to a Ca(2+)-dependent uptake or incorporation of MVA into sterols, since these processes are not affected in the absence of external Ca2+. In addition, cobalt, a known antagonist of Ca(2+)-dependent cellular functions, totally abolishes (IC50 = 520 microM in the presence of 1.8 mM extracellular Ca2+) the MVA-accelerated degradation of HMGal. These results suggest that Ca2+ plays a major role in the regulated degradation of HMG-CoA reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号