首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In Arabidopsis thaliana the induction of plant trehalase during clubroot disease was proposed to act as a defense mechanism in the susceptible accession Col-0, which could thereby cope with the accumulation of pathogen-synthesized trehalose. In the present study, we assessed trehalose activity and tolerance to trehalose in the clubroot partially resistant accession Bur-0. We compared both accessions for several trehalose-related physiological traits during clubroot infection. A quantitative trait loci (QTLs) analysis of tolerance to exogenous trehalose was also conducted on a Bur-0xCol-0 RIL progeny. Trehalase activity was not induced by clubroot in Bur-0 and the inhibition of trehalase by validamycin treatments resulted in the enhancement of clubroot symptoms only in Col-0. In pathogen-free cultures, Bur-0 showed less trehalose-induced toxicity symptoms than Col-0. A QTL analysis identified one locus involved in tolerance to trehalose overlapping the confidence interval of a QTL for resistance to Plasmodiophora brassicae. This colocalization was confirmed using heterogeneous inbred family (HIF) lines. Although not based on trehalose catabolism capacity, partial resistance to clubroot is to some extent related to the tolerance to trehalose accumulation in Bur-0. These findings support an original model where contrasting primary metabolism-related regulations could contribute to the partial resistance to a plant pathogen.  相似文献   

2.
Clubroot, caused by Plasmodiophora brassicae, is one of the most damaging diseases of vegetable Brassica crops in the world. In this study, genetic control and mapping of loci implied in quantitative resistance against five isolates of P. brassicae were studied in the F1 and F2/3 progenies of the cross C10 (resistant kale)×HDEM (susceptible broccoli). A genetic map was constructed using RFLP, random and specific PCR-based markers. The 199 loci were assembled into nine linkage groups covering 1,226.3 cM. The F3 families were assessed for resistance under controlled conditions with four single-spore isolates and one field isolate. A total of nine genomic regions were detected for clubroot resistance. Depending on the isolate, two to five QTLs were identified. The total phenotypic variation accounted for by QTLs ranged from 70% to 88% depending on the isolate. One of the QTLs (Pb-Bo1) was detected in all isolates and explained 20.7–80.7% of the phenotypic variation. Pb-Bo1 had a major effect on three isolates but this effect was weaker for the last two. Five QTLs with minor effect were identified in only one isolate. To construct clubroot resistant varieties, the existence of both broad-spectrum and isolate-specific QTLs should be taken into account for the choice of genomic regions to use in a marker-assisted selection strategy.Communicated by C. Möllers  相似文献   

3.
In an analysis of 114 F2 individuals from a cross between clubroot-resistant and susceptible lines of Brassica rapa L., 'G004' and 'Hakusai Chukanbohon Nou 7' (A9709), respectively, we identified two loci, Crr1 and Crr2, for clubroot (caused by Plasmodiophora brassicae Woronin) resistance. Each locus segregated independently among the F2 population, indicating that the loci reside on a different region of chromosomes or on different chromosomes. Genetic analysis showed that each locus had little effect on clubroot resistance by itself, indicating that these two loci are complementary for clubroot resistance. The resistance to clubroot was much stronger when both loci were homozygous for resistant alleles than when they were heterozygous. These results indicate that clubroot resistance in B. rapa is under oligogenic control and at least two loci are necessary for resistance.Communicated by H.C. Becker  相似文献   

4.
Plasmodiophora brassicae, the causal agent of clubroot disease of the Brassica crops, is widespread in the world. Quantitative trait loci (QTLs) for partial resistance to 4 different isolates of P. brassicae (Pb2, Pb4, Pb7, and Pb10) were investigated using a BC1F1 population from a cross between two subspecies of Brassica rapa, i.e. Chinese cabbage inbred line C59-1 as a susceptible recurrent parent and turnip inbred line ECD04 as a resistant donor parent. The BC1F2 families were assessed for resistance under controlled conditions. A linkage map constructed with simple sequence repeats (SSR), unigene-derived microsatellite (UGMS) markers, and specific markers linked to published clubroot resistance (CR) genes of B. rapa was used to perform QTL mapping. A total of 6 QTLs residing in 5 CR QTL regions of the B. rapa chromosomes A01, A03, and A08 were identified to account for 12.2 to 35.2% of the phenotypic variance. Two QTL regions were found to be novel except for 3 QTLs in the respective regions of previously identified Crr1, Crr2, and Crr3. QTL mapping results indicated that 1 QTL region was common for partial resistance to the 2 isolates of Pb2 and Pb7, whereas the others were specific for each isolate. Additionally, synteny analysis between B. rapa and Arabidopsis thaliana revealed that all CR QTL regions were aligned to a single conserved crucifer blocks (U, F, and R) on 3 Arabidopsis chromosomes where 2 CR QTLs were detected in A. thaliana. These results suggest that some common ancestral genomic regions were involved in the evolution of CR genes in B. rapa.  相似文献   

5.
Epidemics of powdery mildew due to Leveillula taurica is an increasing problem in pepper production areas, particularly in coastal regions or greenhouse cultivation. The highly resistant genitor 'H3' was submitted to genetic analysis and QTL mapping in order to promote the introgression of its oligogenic resistance into large and sweet-fruited cultivars. The doubled-haploid progeny from the cross 'H3' (resistant) by 'Vania' (susceptible) was tested for resistance under both natural field infection and artificial inoculation tests, and QTL detection was compared for those two methods. Seven genomic regions including additive QTLs and epistatic interactions were detected, explaining altogether the major part of genotypic variance. Two genomic regions were common to both the evaluation methods, whereas other QTLs were method-specific, reflecting the environment dependence of powdery mildew epidemics. Orthologies with tomato genomic regions carrying resistance genes to L. taurica and Oidium lycopersicum were revealed by comparative mapping with pepper. Tight linkages between the detected QTLs and virus resistance or fruit color traits in pepper were also shown, which adds to the agronomic importance of these regions in pepper breeding programs.Communicated by G. Wenzel  相似文献   

6.
Whereas resistance genes (R-genes) governing qualitative resistance have been isolated and characterized, the biological roles of genes governing quantitative resistance (quantitative trait loci, QTLs) are still unknown. We hypothesized that genes at QTLs could share homologies with cloned R-genes. We used a PCR-based approach to isolate R-gene analogs (RGAs) with consensus primers corresponding with conserved domains of cloned R-genes: (i) the nucleotide binding site (NBS) and hydrophobic domain, and (ii) the kinase domain. PCR-amplified fragments were sequenced and mapped on a pepper intraspecific map. NBS-containing sequences of pepper, most similar to the N gene of tobacco, were classified into seven families and all mapped in a unique region covering 64 cM on the Noir chromosome. Kinase domain containing sequences and cloned R-gene homologs (Pto, Fen, Cf-2) were mapped on four different linkage groups. A QTL involved in partial resistance to cucumber mosaic virus (CMV) with an additive effect was closely linked or allelic to one NBS-type family. QTLs with epistatic effects were also detected at several RGA loci. The colocalizations between NBS-containing sequences and resistance QTLs suggest that the mechanisms of qualitative and quantitative resistance may be similar in some cases.  相似文献   

7.
Lactuca sativa (lettuce) is susceptible to Bremia lactucae (downy mildew). In cultivated and wild Lactuca species, Dm genes have been identified that confer race-specific resistance. However, these genes were soon rendered ineffective by adaptation of the pathogen. Lactuca saligna (wild lettuce) is resistant to all downy mildew races and can be considered as a non-host. Therefore, L. saligna might be an alternative source for a more-durable resistance to downy mildew in lettuce. In order to analyze this resistance, we have developed an F(2) population based on a resistant L. saligna x susceptible L. sativa cross. This F(2) population was fingerprinted with AFLP markers and tested for resistance to two Bremia races NL14 and NL16. The F(2) population showed a wide and continuous range of resistance levels from completely resistant to completely susceptible. By comparison of disease tests, we observed a quantitative resistance against both Bremia races as well as a race-specific resistance to Bremia race NL16 and not to NL14. QTL mapping revealed a qualitative gene ( R39) involved in the race-specific resistance and three QTLs ( RBQ1, RBQ2 and RBQ3) involved in the quantitative resistance. The qualitative gene R39 is a dominant gene that gives nearly complete resistance to race NL16 in L. saligna CGN 5271 and therefore it showed features similar to Dm genes. The three QTLs explained 51% of the quantitative resistance against NL14, which indicated that probably only the major QTLs have been detected in this F(2) population. The perspectives for breeding for durable resistance are discussed.  相似文献   

8.
Pseudomonas syringae pv. phaseolicola is an important disease that causes halo blight in common bean. The genetic mechanisms underlying quantitative halo blight resistance are poorly understood in this species, as most disease studies have focused on qualitative resistance. The present work examines the genetic basis of quantitative resistance to the nine halo blight races in different organs (primary and trifoliate leaf, stem and pod) of an Andean recombinant inbred line (RIL) progeny. Using a multi-environment quantitative trait locus (QTL) mapping approach, 76 and 101 main-effect and epistatic QTLs were identified, respectively. Most of the epistatic interactions detected were due to loci without detectable QTL additive main effects. Main and epistatic QTLs detected were mainly consistent across the environment conditions. The homologous genomic regions corresponding to 26 of the 76 main-effect detected QTLs were positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL) proteins and known defence genes. Main-effect QTLs for resistance to races 3, 4 and 5 in leaf, stem and pod were located on chromosome 2 within a 3.01-Mb region, where a cluster of nine NL genes was detected. The NL gene Phvul.002G323300 is located in this region, which can be considered an important putative candidate gene for the non-organ-specific QTL identified here. The present research provides essential information not only for the better understanding of the plant-pathogen interaction but also for the application of genomic assisted breeding for halo blight resistance in common bean.  相似文献   

9.
The inheritance of resistance to Ascochyta blight, an economically important foliar disease of field pea (Pisum sativum L.) worldwide, was investigated. Breeding resistant pea varieties to this disease, caused by Mycosphaerella pinodes, is difficult due to the availability of only partial resistance. We mapped and characterized quantitative trait loci (QTLs) for resistance to M. pinodes in pea. A population of 135 recombinant inbred lines (RILs), derived from the cross between DP (partially resistant) and JI296 (susceptible), was genotyped with morphological, RAPD, SSR and STS markers. A genetic map was elaborated, comprising 206 markers distributed over eight linkage groups and covering 1,061 cM. The RILs were assessed under growth chamber and field conditions at the seedling and adult plant stages, respectively. Six QTLs were detected at the seedling stage, which together explained up to 74% of the variance. Ten QTLs were identified at the adult plant stage in the field, and together these explained 56.6–67.1% of the variance, depending on the resistance criteria and the organ considered. Four QTLs were detected under both growth chamber and field conditions, suggesting they were not plant-stage dependent. Three QTLs for flowering date and three QTLs for plant height were also identified in the RIL population, some of which co-located with QTLs for resistance. The relationship between QTLs for resistance to M. pinodes, plant height and flowering date is discussed.Communicated by H.C. Becker  相似文献   

10.
 The partial resistance to leaf rust in barley is a quantitative resistance that is not based on hypersensitivity. To map the quantitative trait loci (QTLs) for partial resistance to leaf rust, we obtained 103 recombinant inbred lines (RILs) by single-seed descent from a cross between the susceptible parent L94 and the partially resistant parent Vada. These RILs were evaluated at the seedling and adult plant stages in the greenhouse for the latent period (LP) of the rust fungus, and in the field for the level of infection, measured as area under the disease progress curve (AUDPC). A dense genetic map based on 561 AFLP markers had been generated previously for this set of RILs. QTLs for partial resistance to leaf rust were mapped using the “Multiple Interval Mapping” method with the putative QTL markers as cofactors. Six QTLs for partial resistance were identified in this population. Three QTLs, Rphq1, Rphq2 and Rphq3, were effective at the seedling stage and contributed approximately 55% to the phenotypic variance. Five QTLs, Rph2, Rphq3, Rphq4, Rphq5, and/or Rphq6 contributed approximtely. 60% of the phenotypic variance and were effective at the adult plant stage. Therefore, only the QTLs Rphq2 and Rhpq3 were not plant-stage dependent. The identified QTLs showed mainly additive effects and only one significant interaction was detected, i.e. between Rphq1 and Rphq2. The map positions of these QTLs did not coincide with those of the race-specific resistance genes, suggesting that genes for partial resistance and genes for hypersensitive resistance represent entirely different gene families. Also, three QTLs for days to heading, of which two were also involved in plant height, were identified in the present recombinant inbred population. These QTLs had been mapped previously on the same positions in different populations. The perspectives of these results for breeding for durable resistance to leaf rust are discussed. Received: 15 July 1997 / Accepted: 30 December 1997  相似文献   

11.
12.
Crenate broomrape (Orobanche crenata) is the major constraint for pea cultivation in the Mediterranean Basin and Middle East. Cultivation of resistant varieties would be the most efficient, economical and environmentally friendly way to control this parasite. However, little resistance is available within cultivated pea. Promising sources of resistance have been identified in wild peas but their use in breeding programs is hampered by the polygenic nature of the resistance. The identification of molecular markers linked to the resistance would allow tracking of the underlying genes, facilitating their introgression into pea cultivars. The main objective of this study was the identification of genomic regions associated with resistance to O. crenata. A RIL (Recombinant Inbred Lines) population derived from a cross between a resistant accession of the wild pea Pisum sativum ssp. syriacum, and a susceptible pea variety was screened for resistance to O. crenata under field conditions during two seasons. In addition, resistance reactions at different stages of the O. crenata infection cycle were assessed using a Petri dish method. The approach allowed the identification of four Quantitative Trait Loci (QTL) associated with field resistance, assessed as the number of emerged broomrape shoots per pea plant under field conditions. These identified QTLs explained individually from 10 to 17% of the phenotypic variation. In addition QTLs governing specific mechanisms of resistance, such as low induction of O. crenata seed germination, lower number of established tubercles per host root length unit, and slower development of tubercles were also identified. Identified QTLs explained individually from 8 to 37% of the variation observed depending on the trait. Host plant aerial biomass and root length were also assessed and mapped. Both traits were correlated with the level of O. crenata infection and three out of the four QTLs controlling resistance under field conditions co-localized with QTLs controlling plant aerial biomass or root length. The relationship observed among these traits and resistance is discussed.  相似文献   

13.
Resistance to Ascochyta blight of pea was genetically characterized by mapping quantitative trait loci (QTLs) using two crosses, 3147-A26 (A26, partially resistant) × cultivar Rovar (susceptible) and 3148-A88 (A88, partially resistant) × Rovar, with the aim of developing an increased understanding of the genetics of resistance and of identifying linked molecular markers that may be used to develop resistant germplasm. Molecular linkage maps for both crosses were aligned so that the results of QTL mapping could be compared. Ascochyta blight disease severity in response to natural epidemics was measured in field trials conducted in Western Australia and New Zealand. Eleven putative QTLs for Ascochyta blight resistance were identified from the A26 × Rovar population and 14 putative QTLs from the A88 × Rovar population. Six QTLs were associated with the same genomic regions in both populations. These QTLs reside on linkage groups II, III, IV, V, and VII (two QTLs). The severity of Ascochyta blight disease symptoms on pea increases during field epidemics as plants mature; therefore, QTLs for plant reproductive maturity were mapped. Six QTLs were detected for plant maturity in the A26 × Rovar population, while five plant maturity QTLs were mapped in the A88 × Rovar population. QTLs for plant maturity coincide with Ascochyta blight resistance QTLs in four genomic regions, on linkage groups II (two regions), III, and V. The plant maturity and Ascochyta blight resistance QTLs on III were linked in repulsion phase. Therefore, the coincidence of these QTLs may be explained by linkage of distinct loci for the two traits. The QTLs on linkage groups II and V were linked in coupling phase; therefore, linked QTLs for resistance and maturity may be present in these regions, or the Ascochyta blight resistance QTLs detected in these regions are the result of pleiotropic effects of plant-maturity genetic loci.  相似文献   

14.
Drought significantly affects the architectural development of maize inflorescence, which leads to massive losses in grain yield. However, the genetic mechanism for traits involved in inflorescence architecture in different watering environments, remains poorly understood in maize. In this study, 19 QTLs for tassel primary branch number (TBN) and ear number per plant (EN) were detected in 2 F2:3 populations under both well-watered and water-stressed environments by single environment mapping with composite interval mapping (CIM); 11/19 QTLs were detected under water-stressed environments. Moreover, 21 QTLs were identified in the 2 F2:3 populations by joint analysis of all environments with a mixed linear model based on composite interval mapping (MCIM), 11 QTLs were involved in QTL × environment interactions, seven epistatic interactions were identified with additive by additive/dominance effects. Remarkably, 12 stable QTLs (sQTLs) were simultaneously detected by single environment mapping with CIM and joint analysis through MCIM, which were concentrated in ten bins across the chromosomes: 1.05_1.07, 1.08_1.10, 2.01_2.04, 3.01, 4.06, 4.09, 5.06_5.07, 6.05, 7.00, and 7.04 regions. Twenty meta-QTLs (mQTLs) were detected across 19 populations under 51 watering environments using a meta-analysis, and 34 candidate genes were predicted in corresponding mQTLs regions to be involved in the regulation of inflorescence development and drought resistance. Therefore, these results provide valuable information for finding quantitative trait genes and to reveal the genetic mechanisms responsible for TBN and EN under different watering environments. Furthermore, alleles for TBN and EN provide useful targets for marker-assisted selection to generate high-yielding maize varieties.  相似文献   

15.
A higher understanding of genetic and genomic bases of partial resistance in plants and their diversity regarding pathogen variability is required for a more durable management of resistance genetic factors in sustainable cropping systems. In this study, we investigated the diversity of genetic factors involved in partial resistance to Aphanomyces euteiches, a very damaging pathogen on pea and alfalfa, in Medicago truncatula. A mapping population of 178 recombinant inbred lines, from the cross F83005.5 (susceptible) and DZA045.5 (resistant), was used to identify quantitative trait loci for resistance to four A. euteiches reference strains belonging to the four main pathotypes currently known on pea and alfalfa. A major broad-spectrum genomic region, previously named AER1, was localized to a reduced 440 kb interval on chromosome 3 and was involved in complete or partial resistance, depending on the A. euteiches strain. We also identified 21 additive and/or epistatic genomic regions specific to one or two strains, several of them being anchored to the M. truncatula physical map. These results show that, in M. truncatula, a complex network of genetic loci controls partial resistance to different pea and alfalfa pathotypes of A. euteiches, suggesting a diversity of molecular mechanisms underlying partial resistance.  相似文献   

16.
17.
18.
The complex resistance to cucumber mosaic virus (CMV) present in the exotic melon accession Sonwang Charmi PI161375 (SC) has been studied using two populations, a near-isogenic line (NIL) collection and a doubled haploid line (DHL) collection, both generated from a cross between SC and the cultivar Piel de Sapo as resistant and susceptible parents, respectively. The NIL collection had previously allowed us to describe a single recessive gene, cmv1, which conferred full resistance to CMV strains P9 and P104.82. Screening of the whole DHL population followed by quantitative trait locus (QTL) analysis revealed that resistance to the strains M6 and TL, both non-responsive to cmv1, was quantitative and governed by at least three QTLs. One of them, cmvqw12.1, co-located with cmv1 in linkage group (LG) XII. The QTL analysis mapped another two QTLs in LGIII (cmvqw3.1) and LGX (cmvqw10.1) and showed interaction between cmvqw12.1 and cmvqw3.1. Progeny of crosses between resistant DHLs carrying the three main QTLs showed complete resistance to the strain M6, validating the accuracy of the QTL analysis. However, in our screening, there were resistant DHLs carrying only two QTLs, suggesting that there are other regions involved in resistance to M6 and required when one of the main QTLs is missing. Therefore, resistance to CMV in melon SC is qualitative for some strains and quantitative for the rest. For this late resistance, cmv1 is necessary and explains most of the phenotypic variance, but it is not sufficient, and needs the interaction with other loci.  相似文献   

19.
Sclerotinia stem rot is the most devastating disease of rapeseed (Brassica napus L.) in China. Quantitative trait loci (QTLs) involved in resistance to Sclerotinia sclerotiorum were detected in a rapeseed population of 128-F(2:3) families derived from a cross between the male sterility restorer line H5200 and a partial resistant line Ning RS-1. A total of 107 molecular markers including 72 RFLPs, 30 AFLPs, 3 SSRs and 2 RAPDs were employed to construct a genetic linkage map with 23 linkage groups covering 1,625.7 cM with an average space of 15.2 cM. Resistance was assessed empirically at two developmental stages: with a detached leaf inoculation at the seedling stage and in vivo stem inoculation at the mature plant stage. The observed resistance was scored for each plant as leaf resistance at the seedling stage (LRS) and stem resistance at the mature plant stage (SRM). A total of 13 loci were identified by one-way ANOVA and six QTLs were detected with MapMaker-QTL. We found that three of the six QTLs were associated with leaf resistance at the seedling stage and collectively accounted for 40.7% of the total phenotypic variation, each accounting for 23.2%, 16.6% and 13.6% respectively. Three QTLs were found corresponding to the disease resistance at the mature plant stage, explaining 49.0% of the phenotypic variation. Epistasis was observed for the resistance and the additive by additive interactions were the predominant type of epistasis. It was concluded that both single-locus QTLs and epistatic interactions played important roles in Sclerotinia resistance in rapeseed.  相似文献   

20.
Mapping of QTL for downy mildew resistance in maize   总被引:4,自引:0,他引:4  
Quantitative trait loci (QTLs) of maize involved in mediating resistance to Peronosclerospora sorghi, the causative agent of sorghum downy mildew (SDM), were detected in a population of recombinant inbred lines (RILs) derived from the Zea mays L. cross between resistant (G62) and susceptible (G58) inbred lines. Field tests of 94 RILs were conducted over two growing seasons using artificial inoculation. Heritability of the disease reaction was high (around 70%). The mapping population of the RILs was also scored for restriction fragment length polymorphic (RFLP) markers. One hundred and six polymorphic RFLP markers were assigned to ten chromosomes covering 1648 cM. Three QTLs were detected that significantly affected resistance to SDM combined across seasons. Two of these mapped quite close together on chromosome 1, while the third one was on chromosome 9. The percentage of phenotypic variance explained by each QTL ranged from 12.4% to 23.8%. Collectively, the three QTLs identified in this study explained 53.6% of the phenotypic variation in susceptibility to the infection. The three resistant QTLs appeared to have additive effects. Increased susceptibility was contributed by the alleles of the susceptible parent. The detection of more than one QTL supports the hypothesis that several qualitative and quantitative genes control resistance to P. sorghi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号