首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Gu X  Liu B  Wu X  Yan Y  Zhang Y  Wei Y  Pleasure SJ  Zhao C 《PloS one》2011,6(12):e28653
During cortical development, Cajal-Retzius (CR) cells are among the earliest-born subclasses of neurons. These enigmatic neurons play an important role in cortical development through their expression of the extracellular protein, reelin. CR cells arise from discrete sources within the telencephalon, including the pallial-subpallial border and the medial (cortical hem) regions of the pallium. Combined evidence suggests that CR cells derived from distinct origins may have different distributions and functions. By tracing CR cells derived from the cortical hem using the inducible Cre transgenic mouse tool, Frizzled 10-CreER™, we examined the specific properties of hem-derived CR cells during cortical development. Our results show that the progenitor zone for later production of CR cells from the hem can be specifically marked as early as embryonic day 6.5 (E6.5), a pre-neural period. Moreover, using our Cre line, we found that some hem-derived CR cells migrated out along the fimbrial radial glial scaffold, which was also derived from the cortical hem, and preferentially settled in the hippocampal marginal zone, which indicated specific roles for hem-derived CR cells in hippocampal development.  相似文献   

2.
Chen Y  Magnani D  Theil T  Pratt T  Price DJ 《PloS one》2012,7(3):e33105
Developing thalamocortical axons traverse the subpallium to reach the cortex located in the pallium. We tested the hypothesis that descending corticofugal axons are important for guiding thalamocortical axons across the pallial-subpallial boundary, using conditional mutagenesis to assess the effects of blocking corticofugal axonal development without disrupting thalamus, subpallium or the pallial-subpallial boundary. We found that thalamic axons still traversed the subpallium in topographic order but did not cross the pallial-subpallial boundary. Co-culture experiments indicated that the inability of thalamic axons to cross the boundary was not explained by mutant cortex developing a long-range chemorepulsive action on thalamic axons. On the contrary, cortex from conditional mutants retained its thalamic axonal growth-promoting activity and continued to express Nrg-1, which is responsible for this stimulatory effect. When mutant cortex was replaced with control cortex, corticofugal efferents were restored and thalamic axons from conditional mutants associated with them and crossed the pallial-subpallial boundary. Our study provides the most compelling evidence to date that cortical efferents are required to guide thalamocortical axons across the pallial-subpallial boundary, which is otherwise hostile to thalamic axons. These results support the hypothesis that thalamic axons grow from subpallium to cortex guided by cortical efferents, with stimulation from diffusible cortical growth-promoting factors.  相似文献   

3.
4.
目的:探讨碳酸氢钠协同转运载体(NBC1)在大鼠胰腺胚胎发育期不同阶段核酸、蛋白水平的动态变化以及在腺泡和β细胞的定位表达。方法:采用高密度寡核苷酸芯片对孕12.5 d(E12.5)、E15.5、E18.5、新生和成年胰腺进行基因转录水平分析,用RT-PCR和Western blot分别验证了NBC1核酸和蛋白在E15.5、E18.5、新生和成年时期胰腺中的表达情况,用Double fluorescence immunohistochemistry分析了NBC1在E18.5、新生和成年时期胰腺腺泡和β细胞的定位表达。结果:在大鼠胰腺胚胎发育过程中,NBC1核酸、蛋白在E18.5时特异高表达,新生下降直至成年最低;在腺泡基底侧膜和β细胞膜有强烈的阳性信号,且在成年胰腺中β细胞膜阳性信号较腺泡基底侧膜强。NBC1的表达变化与其功能近似基因的表达趋势相反,而与其协同发挥作用的基因及胰腺特异基因的表达趋势一致。结论:NBC1在胰腺发育过程中不仅与结构形成而且与功能发挥相关。  相似文献   

5.
6.
7.
8.
9.
The present study delineates the large-scale, organic responses of growth in the dorsal pallium to targeted genetic ablations of the principal PP (preplate) neurons of the neocortex. Ganciclovir treatment during prenatal development [from E11 (embryonic age 11) to E13] of mice selectively killed cells with shared S-phase vulnerability and targeted expression of a GPT [golli promoter transgene; GPT linked to HSV-TK (herpes simplex virus-thymidine kinase), τ-eGFP and lacZ reporters] localized in PP neurons and their intermediate progenitor neuroblasts. The volume, area and thickness of the pallium were measured in an E12–P4 (postnatal age 4) longitudinal study with comparisons between ablated (HSV-TK+/0) and control (HSV-TK0/0) littermates. The extent of ablations was also systematically varied, and the effect on physical growth was assessed in an E18 cross-sectional study. The morphological evidence obtained in the present study supports the conclusion that genetically targeted ablations delay the settlement of the principal PP neurons of the dorsal pallium. This leads to progressive and substantial reductions of growth, despite compensatory responses that rapidly replace the ablated cells. These growth defects originate from inductive cellular interactions in the proliferative matrix of the ventricular zone of the pallium, but are amplified by subsequent morphogenic and trophic cellular interactions. The defects persist during the course of prenatal and postnatal development to demonstrate a constrained dose–response relationship with the extent of specific killing of GPT neurons. The defects propagate simultaneously in both the horizontal and vertical cytoarchitectural dimensions of the developing pallium, an outcome that produces a localized shortfall of volume in the telencephalic vesicles.  相似文献   

10.
11.
DNA-binding specificity and embryological function of Xom (Xvent-2)   总被引:30,自引:0,他引:30  
Directed cell movement is integral to both embryogenesis and hematopoiesis. In the adult, the chemokine family of secreted proteins signals migration of hematopoietic cells through G-coupled chemokine receptors. We detected embryonic expression of chemokine receptor messages by RT-PCR with degenerate primers at embryonic day 7.5 (E7.5) or by RNase protection analyses of E8.5 and E12.5 tissues. In all samples, the message encoding CXCR4 was the predominate chemokine receptor detected, particularly at earlier times (E7.5 and E8.5). Other chemokine receptor messages (CCR1, CCR4, CCR5, CCR2, and CXCR2) were found in E12.5 tissues concordant temporally and spatially with definitive (adult-like) hematopoiesis. Expression of CXCR4 was compared with that of its only known ligand, stromal cell-derived factor-1 (SDF-1), by in situ hybridization. During organogenesis, these genes have dynamic and complementary expression patterns particularly in the developing neuronal, cardiac, vascular, hematopoietic, and craniofacial systems. Defects in the first four of these systems have been reported in CXCR4- and SDF-1-deficient mice. Our studies suggest new potential mechanisms for some of these defects as well as additional roles beyond the scope of the reported abnormalities. Earlier in development, expression of these genes correlates with migration during gastrulation. Migrating cells (mesoderm and definitive endoderm) contain CXCR4 message while embryonic ectoderm cells express SDF-1. Functional SDF-1 signaling in midgastrula cells as well as E12.5 hematopoietic progenitors was demonstrated by migration assays. Migration occurred with an optimum dose similar to that found for adult hematopoietic cells and was dependent on the presence of SDF-1 in a gradient. This work suggests roles for chemokine signaling in multiple embryogenic events.  相似文献   

12.
To identify proteins involved in pancreatic development, we used a differential proteomics approach by comparing pancreatic extracts from four biologically significant stages of development: embryonic day (E) 15.5, E18.5, postnatal (P) days 0 and adult. By two-dimensional gel electrophoresis (2D-E) and MALDI-TOF MS (Matrix Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry) following database searching and protein annotation, 15 proteins were identified as being differently expressed in the pancreas between the four phases. The expression pattern and the localization of alpha-fetoprotein (AFP), one of significant changed proteins observed, were further determined. Four isoforms of AFP (72 kDa, 60 kDa, 48 kDa and 37 kDa) were found by Western blotting in the pancreas tested, most of them showed a stronger signal in E18.5 followed by a steady decrease and only a 60-kDa isoform was detected in the adult pancreas. Immunolocalization for AFP revealed that a positive reactivity was detectable at E15.5 pancreas, became stronger in the cytoplasm of mesenchyme cells at E18.5, and declined after birth to a nearly undetectable level in adults. The dynamic expression of AFP in rat pancreas from different stages indicates that AFP might be involved in some aspects of pancreatic development.  相似文献   

13.
In mice, the yolk sac appears to play a crucial role in nourishing the developing embryo, especially during embryonic days (E) 7;-10. Lipoprotein synthesis and secretion may be essential for this function: embryos lacking apolipoprotein (apo) B or microsomal triglyceride transfer protein (MTP), both of which participate in the assembly of triglyceride-rich lipoproteins, are apparently defective in their ability to export lipoproteins from yolk sac endoderm cells and die during mid-gestation. We therefore analyzed the embryonic expression of apoB, MTP, and alpha-tocopherol transfer protein (alpha-TTP), which have been associated with the assembly and secretion of apoB-containing lipoproteins in the adult liver, at different developmental time points. MTP expression or activity was found in the yolk sac and fetal liver, and low levels of activity were detected in E18.5 placentas. alpha-TTP mRNA and protein were detectable in the fetal liver, but not in the yolk sac or placenta. Ultrastructural analysis of yolk sac visceral endoderm cells demonstrated nascent VLDL within the luminal spaces of the rough endoplasmic reticulum and Golgi apparatus at E7.5 and E8.5. The particles were reduced in diameter at E13.5 and reduced in number at E18.5;-19.The data support the hypothesis that the yolk sac plays a vital role in providing lipids and lipid-soluble nutrients to embryos during the early phases (E7;-10) of mouse development. secretion in mouse yolk sac during embryonic development.  相似文献   

14.
A concentration gradient of stromal-cell-derived factor-1alpha (SDF-1alpha) is the major mechanism for homing of haematopoietic stem cells (HSCs) in bone marrow. We tested the hypothesis that a gene therapy using SDF-1alpha can enhance HSCs recruiting to the heart upon myocardial infarction (MI). Adult mice with surgically induced myocardial ischemia were injected intramyocardially with either saline (n=12) or SDF-1alpha plasmid (n=12) in 50 microl volume in the ischemic border zone of the infarcted heart 2 weeks after myocardial infarction. Donor Lin-c-kit+ HSCs from isogenic BalB/c mice were harvested, sorted through magnetic cell sorting (MACS) and labeled with PKH26 Red. Three days after plasmid or saline injection, 1x10(5) labeled cells were injected intravenously (i.v.) into saline mice (n=4) and SDF-1alpha plasmid mice (n=4). The hearts and other tissue were removed for Western blot assay 2 weeks after plasmid or saline treatment. The labeled Lin-c-kit+ cells were identified with immunofluoresent staining and endogenous c-kit+ cells were identified by immunohistochemical staining. In mice killed at 1 month postinfarct, Western blot showed higher levels of SDF-1alpha expression in SDF-1alpha-treated mouse ischemic hearts compared to saline-treated hearts and other tissues. In the SDF-1alpha plasmid-treated hearts, SDF-1alpha is overexpressed in the periinfarct zone. The labeled stem cells engrafted to the SDF-1alpha positive site in the myocardium. There was also evidence for endogenous stem cell recruiting. The density of c-kit+ cells in border zone, an index of endogenous stem cell mobilization, was significantly higher in the SDF-1alpha-treated group than in the saline group (14.63+/-1.068 cells/hpf vs. 11.31+/-0.65 cells/hpf, P=0.013) at 2 weeks after SDF-1alpha or saline treatment. Following myocardial infarction, treatment with SDF-1alpha recruits stem cells to damaged heart where they may have a role in repairing and regeneration. The gene therapy with an SDF-1alpha vector offers a promising therapeutic strategy for mobilizing stem cells to the ischemic myocardium.  相似文献   

15.
目的了解在大鼠脑发育过程中,mash-1在SVZa神经干细胞迁移流通路中三个不同脑区内的表达模式。方法用RT-PCR和免疫荧光染色的方法观察在胚胎14d(E14),出生后0d(P0),生后7d(P7)3个不同发育阶段大鼠SVZa、RMS、OB3个区域mash-1的表达情况。结果RT-PCR显示在大鼠脑发育过程中SVZa、RMS、OB三个区域mash-1的mRNA均有不同程度的表达,在出生前后(P0)表达最高;免疫组化显示在大鼠脑发育成熟过程中,mash-1表达水平呈现复杂的时空表达模式,在胚胎期SVZa神经干细胞迁移流通路中表达密集,P0时期在嗅球有较高的表达,P7以后mash-1的表达水平普遍下降。结论mash-1可能主要参与调节大鼠SVZa神经干细胞分化过程,对其迁移和增殖也可能具有积极影响。  相似文献   

16.
17.
Mechanisms of resource allocation are essential for maternal and fetal survival, particularly when the availability of nutrients is limited. We investigated the responses of feto-placental development to maternal chronic protein malnutrition to test the hypothesis that maternal low protein diet produces differential growth restriction of placental and fetal tissues, and adaptive changes in the placenta that may mitigate impacts on fetal growth. C57BL/6J female mice were fed either a low-protein diet (6% protein) or control isocaloric diet (20% protein). On embryonic days E10.5, 17.5 and 18.5 tissue samples were prepared for morphometric, histological and quantitative RT-PCR analyses, which included markers of trophoblast cell subtypes. Potential endocrine adaptations were assessed by the expression of Prolactin-related hormone genes. In the low protein group, placenta weight was significantly lower at E10.5, followed by reduction of maternal weight at E17.5, while the fetuses became significantly lighter no earlier than at E18.5. Fetal head at E18.5 in the low protein group, though smaller than controls, was larger than expected for body size. The relative size and shape of the cranial vault and the flexion of the cranial base was affected by E17.5 and more severely by E18.5. The junctional zone, a placenta layer rich in endocrine and energy storing glycogen cells, was smaller in low protein placentas as well as the expression of Pcdh12, a marker of glycogen trophoblast cells. Placental hormone gene Prl3a1 was altered in response to low protein diet: expression was elevated at E17.5 when fetuses were still growing normally, but dropped sharply by E18.5 in parallel with the slowing of fetal growth. This model suggests that nutrients are preferentially allocated to sustain fetal and brain growth and suggests the placenta as a nutrient sensor in early gestation with a role in mitigating impacts of poor maternal nutrition on fetal growth.  相似文献   

18.
To gain insight into the role of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) enzymes and actions of glucocorticoids in the murine placenta and uterus, the expression pattern of the mRNA for 11beta-HSD1 and 11beta-HSD2 and the glucocorticoid receptor (GR) protein were determined from Embryonic Day 12.5 (E12.5, term = E19) to E18.5 by in situ hybridization and immunohistochemistry, respectively. Consistent with its putative role in regulating the transplacental passage of maternal glucocorticoid to the fetus, 11beta-HSD2 mRNA was highly expressed in the labyrinthine zone (the major site of maternal/fetal exchange) at E12.5, and its level decreased dramatically at E16.5, when it became barely detectable. Remarkably, the silencing of 11beta-HSD2 gene expression coincided with the onset of 11beta-HSD1 gene expression in the labyrinth at E16.5 when moderate levels of 11beta-HSD1 mRNA were detected and maintained to E18.5. By contrast, neither 11beta-HSD1 mRNA nor 11beta-HSD2 mRNA were detected in any cell types within the basal zone from E12.5 to E18.5. Moreover, the expression of 11beta-HSD1 and 11beta-HSD2 in the decidua exhibited a high degree of cell specificity in that the mRNA for both 11beta-HSD1 and 11beta-HSD2 was detected in the decidua-stroma but not in the compact decidua. A distinct pattern was also observed within the endometrium where the mRNA for 11beta-HSD1 was expressed in the epithelium, whereas that for 11beta-HSD2 was confined strictly to the stroma. By comparison, the expression of GR in the placenta and uterus was ubiquitous and unremarkable throughout late pregnancy. In conclusion, the present study demonstrates for the first time remarkable spatial and temporal patterns of expression of 11beta-HSD1 and 11beta-HSD2 and GR in the murine placenta and uterus and highlights the intricate control of not only transplacental passage of maternal glucocorticoid to the fetus but also local glucocorticoid action during late pregnancy.  相似文献   

19.
Expression of Stra13 during mouse endochondral bone development   总被引:2,自引:0,他引:2  
We have examined the expression of the basic helix-loop-helix factor Stra13 (DEC1/Sharp2) during endochondral bone development in the mouse. Stra13 expression was examined by in situ hybridization in the tibia from E14.5-E18.5, and at post-natal day 24. At E14.5, expression of Stra13 mRNA was very low, with expression limited to scattered hypertrophic chondrocytes. At E15.5 Stra13 mRNA was present in post-mitotic hypertrophic chondrocytes, co-localizing with collagen X expression. At E16.5-E18.5, Stra13 was expressed in both the proliferating chondrocytes and in the late hypertrophic chondrocytes. At E15.5-E18.5, Stra13 expression was also observed in the primary spongiosa. Stra13 expression was also maintained in the 24-day post-natal tibia, with expression detectable only in the late hypertrophic chondrocytes. Because Stra13 has been shown to be induced by hypoxia, and the growth plate is hypoxic during embryonic development, we compared the expression pattern of Stra13 and the HIF1-alpha target gene VEGF. VEGF is expressed predominantly in the late hypertrophic chondrocytes, with lower expression in the proliferating chondrocytes. Thus, there was a large degree of overlap in the expression patterns of Stra13 and VEGF in chondrocytes during embryonic development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号