首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Someamphipathic bitter tastants and non-sugar sweeteners are directactivators of G proteins and stimulate transduction pathways in cellsnot related to taste. We demonstrate that the amphipathic bittertastants quinine and cyclo(Leu-Trp) and the non-sugar sweetener saccharin translocate rapidly through multilamellar liposomes. Furthermore, when rat circumvallate (CV) taste buds were incubated withthe above tastants for 30 s, their intracellular concentrations increased by 3.5- to 7-fold relative to their extracellularconcentrations. The time course of this dramatic accumulation was alsomonitored in situ in rat single CV taste buds under a confocallaser-scanning microscope. Tastants were clearly localized to the tastecell cytosol. It is proposed that, due to their rapid permeation into taste cells, these amphipathic tastants may be available for activation of signal transduction components (e.g., G proteins) directly withinthe time course of taste sensation. Such activation may occur inaddition to the action of these tastants on putative G protein-coupledreceptors. This phenomenon may be related to the slow taste onset andlingering aftertaste typically produced by many bitter tastants andnon-sugar sweeteners.

  相似文献   

2.
The transduction of responses to bitter and sweet compounds utilizes guanine nucleotide binding proteins (G proteins) and their coupled receptors. Alpha-gustducin, a transducin-like G protein alpha-subunit, and rod alpha-transducin are expressed in taste receptor cells. Alpha-gustducin knockout mice have profoundly diminished behavioral and electrophysiological responses to many bitter and sweet compounds, although these mice retain residual responses to these compounds. Alpha-gustducin and rod alpha-transducin are biochemically indistinguishable in their in vitro interactions with retinal phosphodiesterase, rhodopsin and G protein betagamma-subunits. To determine if alpha-transducin can function in taste receptor cells and to compare the function of alpha-gustducin versus alpha-transducin in taste transduction in vivo, we generated transgenic mice that express alpha-transducin under the control of the alpha-gustducin promoter in the alpha-gustducin null background. Immunohistochemistry showed that the alpha-transducin transgene was expressed in about two-thirds of the alpha-gustducin lineage of taste receptor cells. Two-bottle preference tests showed that transgenic expression of rod alpha-transducin partly rescued responses to denatonium benzoate, sucrose and the artificial sweetener SC45647, but not to quinine sulfate. Gustatory nerve recordings showed a partial rescue by the transgene of the response to sucrose, SC45647 and quinine, but not to denatonium. These results demonstrate that alpha-transducin can function in taste receptor cells and transduce some taste cell responses. Our results also suggest that alpha-transducin and alpha-gustducin may differ, at least in part, in their function in these cells, although this conclusion must be qualified because of the limited fidelity of the transgene expression.  相似文献   

3.
Bitter taste stimuli are detected by a diverse family of G protein-coupled receptors (GPCRs) expressed in gustatory cells. Each bitter taste receptor (TAS2R) responds to an array of compounds, many of which are toxic and can be found in nature. For example, human TAS2R16 (hTAS2R16) responds to β-glucosides such as salicin, and hTAS2R38 responds to thiourea-containing molecules such as glucosinolates and phenylthiocarbamide (PTC). While many substances are known to activate TAS2Rs, only one inhibitor that specifically blocks bitter receptor activation has been described. Here, we describe a new inhibitor of bitter taste receptors, p-(dipropylsulfamoyl)benzoic acid (probenecid), that acts on a subset of TAS2Rs and inhibits through a novel, allosteric mechanism of action. Probenecid is an FDA-approved inhibitor of the Multidrug Resistance Protein 1 (MRP1) transporter and is clinically used to treat gout in humans. Probenecid is also commonly used to enhance cellular signals in GPCR calcium mobilization assays. We show that probenecid specifically inhibits the cellular response mediated by the bitter taste receptor hTAS2R16 and provide molecular and pharmacological evidence for direct interaction with this GPCR using a non-competitive (allosteric) mechanism. Through a comprehensive analysis of hTAS2R16 point mutants, we define amino acid residues involved in the probenecid interaction that result in decreased sensitivity to probenecid while maintaining normal responses to salicin. Probenecid inhibits hTAS2R16, hTAS2R38, and hTAS2R43, but does not inhibit the bitter receptor hTAS2R31 or non-TAS2R GPCRs. Additionally, structurally unrelated MRP1 inhibitors, such as indomethacin, fail to inhibit hTAS2R16 function. Finally, we demonstrate that the inhibitory activity of probenecid in cellular experiments translates to inhibition of bitter taste perception of salicin in humans. This work identifies probenecid as a pharmacological tool for understanding the cell biology of bitter taste and as a lead for the development of broad specificity bitter blockers to improve nutrition and medical compliance.  相似文献   

4.
A novel family of mammalian taste receptors   总被引:48,自引:0,他引:48  
In mammals, taste perception is a major mode of sensory input. We have identified a novel family of 40-80 human and rodent G protein-coupled receptors expressed in subsets of taste receptor cells of the tongue and palate epithelia. These candidate taste receptors (T2Rs) are organized in the genome in clusters and are genetically linked to loci that influence bitter perception in mice and humans. Notably, a single taste receptor cell expresses a large repertoire of T2Rs, suggesting that each cell may be capable of recognizing multiple tastants. T2Rs are exclusively expressed in taste receptor cells that contain the G protein alpha subunit gustducin, implying that they function as gustducin-linked receptors. In the accompanying paper, we demonstrate that T2Rs couple to gustducin in vitro, and respond to bitter tastants in a functional expression assay.  相似文献   

5.
Sweet successes.     
J W Lewcock  R R Reed 《Neuron》2001,31(4):515-517
Mapping of the chromosomal location of genes essential for sweet and bitter taste and identification of the relevant G protein-coupled receptors reveals unanticipated complexity in taste signaling pathways. The distribution of sweet and bitter receptors suggests complete cellular segregation of these taste modalities. Sweet compounds may be distinguished through differential expression of sweet receptors. Novel heterologous expression systems to test bitter and sweet modalities now provide the tools necessary for understanding taste coding.  相似文献   

6.
Taste cells respond to a wide variety of chemical stimuli: certain ions are perceived as salty (Na+) or sour (H+); other small molecules are perceived as sweet (sugars) and bitter (alkaloids). Taste has evolutionary value allowing animals to respond positively (to sweet carhohydrates and salty NaCl) or aversively (to bitter poisons and corrosive acids). Recently, some of the proteins involved in taste transduction have been cloned. Several different G proteins have been identified and cloned from taste tissue: gustducin is a taste cell specific G protein closely related to the transducins. Work is under way to clone additional components of the taste transduction pathways. The combination of electrophysiology, biochemistry and molecular biology is being used to characterize taste receptor cells and their sensory transduction mechanisms.  相似文献   

7.
T2Rs function as bitter taste receptors   总被引:49,自引:0,他引:49  
Chandrashekar J  Mueller KL  Hoon MA  Adler E  Feng L  Guo W  Zuker CS  Ryba NJ 《Cell》2000,100(6):703-711
Bitter taste perception provides animals with critical protection against ingestion of poisonous compounds. In the accompanying paper, we report the characterization of a large family of putative mammalian taste receptors (T2Rs). Here we use a heterologous expression system to show that specific T2Rs function as bitter taste receptors. A mouse T2R (mT2R-5) responds to the bitter tastant cycloheximide, and a human and a mouse receptor (hT2R-4 and mT2R-8) responded to denatonium and 6-n-propyl-2-thiouracil. Mice strains deficient in their ability to detect cycloheximide have amino acid substitutions in the mT2R-5 gene; these changes render the receptor significantly less responsive to cycloheximide. We also expressed mT2R-5 in insect cells and demonstrate specific tastant-dependent activation of gustducin, a G protein implicated in bitter signaling. Since a single taste receptor cell expresses a large repertoire of T2Rs, these findings provide a plausible explanation for the uniform bitter taste that is evoked by many structurally unrelated toxic compounds.  相似文献   

8.
Diverse extracellular signals regulate seven transmembrane-spanning receptors to modulate cellular physiology. These receptors signal primarily through activation of heterotrimeric guanine nucleotide binding proteins (G proteins). A major determinant of heterotrimeric G protein signaling in vivo and in vitro is the intrinsic GTPase activity of the Galpha subunit. RGS (regulator of G protein signaling) domain-containing proteins are GTPase accelerating proteins specific for Galpha subunits. In this article, we describe the use of the ribose-conjugated fluorescent guanine nucleotide analog BODIPYFL-GTP as a spectroscopic probe to measure intrinsic and RGS protein-catalyzed nucleotide hydrolysis by Galphao. BODIPYFL-GTP bound to Galphao exhibits a 200% increase in fluorescence quantum yield. Hydrolysis of BODIPYFL-GTP to BODIPYFL-GDP reduces the quantum yield to 27% above its unbound value. We demonstrate that BODIPYFL-GTP can be used as a rapid real-time probe for measuring RGS domain-catalyzed GTP hydrolysis by Galphao. We demonstrate the effectiveness of this assay in the analysis of loss-of-function point mutants of both Galphao and RGS12. This assay should be useful in screening for and analyzing RGS protein inhibitory compounds.  相似文献   

9.
Sweet and bitter taste sensations are believed to be initiated by the tastant-stimulated T1R and T2R G protein-coupled receptor (GPCR) subfamilies, respectively, which occur in taste cells. Although such tastants, with their significantly diverse chemical structures (e.g., sugar and nonsugar sweeteners), may share the same or similar T1Rs, some nonsugar sweeteners and many bitter tastants are amphipathic and produce a significant delay in taste termination (lingering aftertaste). We report that such tastants may permeate rat taste bud cells rapidly in vivo and inhibit known signal termination-related kinases in vitro, such as GPCR kinase (GRK)2, GRK5, and PKA. GRK5 and perhaps GRK2 and GRK6 are present in taste cells. A new hypothesis is proposed in which membrane-permeant tastants not only interact with taste GPCRs but also interact intracellularly with the receptors' downstream shutoff components to inhibit signal termination. amphipathic tastants; tastant permeation; desensitization; lingering aftertaste  相似文献   

10.
F R Dastoli 《Life sciences》1974,14(8):1417-1426
The chemistry of taste has eluded widespread investigation until only recently. Of the four basic taste qualities — sweet, salty, sour and bitter, only sweet and to some lesser extent — bitter — have had inroads made on the molecular level. Carbon-14 labeled sugars are preferently bound to taste bud proteins versus other non-sensory proteins. The binding of the sugars is in good agreement with their relative sweetness and graded conformational changes in protein molecules are seen, by a number of methods, upon these interactions. The protein may occur in two forms — soluble and membrane bound, and the bound form can be solubilized. Unique proteins are present in taste buds and would thus differentiate them from other non-sensory proteins. The sweet-sensitive protein activity has been studied in a number of animals, but purification and characterization in all has not proceeded to the point wherein comparisons can be made. Bitter reception has been suggested as the property of a protein from pig tongues, and an enzyme — phosphodiesterase has been found to be both activated and inhibited by bitter compounds. Lipids from gustatory tissue have been suggested as candidates for receptors for salty, sour and bitter, but not sweet stimulants.  相似文献   

11.
Pronin AN  Xu H  Tang H  Zhang L  Li Q  Li X 《Current biology : CB》2007,17(16):1403-1408
Variation in human taste is a well-known phenomenon. However, little is known about the molecular basis for it. Bitter taste in humans is believed to be mediated by a family of 25 G protein-coupled receptors (hT2Rs, or TAS2Rs). Despite recent progress in the functional expression of hT2Rs in vitro, up until now, hT2R38, a receptor for phenylthiocarbamide (PTC), was the only gene directly linked to variations in human bitter taste. Here we report that polymorphism in two hT2R genes results in different receptor activities and different taste sensitivities to three bitter molecules. The hT2R43 gene allele, which encodes a protein with tryptophan in position 35, makes people very sensitive to the bitterness of the natural plant compounds aloin and aristolochic acid. People who do not possess this allele do not taste these compounds at low concentrations. The same hT2R43 gene allele makes people more sensitive to the bitterness of an artificial sweetener, saccharin. In addition, a closely related gene's (hT2R44's) allele also makes people more sensitive to the bitterness of saccharin. We also demonstrated that some people do not possess certain hT2R genes, contributing to taste variation between individuals. Our findings thus reveal new examples of variations in human taste and provide a molecular basis for them.  相似文献   

12.
Riboflavin-binding protein (RBP) from chicken egg, which was recently reported to be a selective sweet inhibitor for protein sweeteners, was also found to be a bitter inhibitor. RBP elicited broadly tuned inhibition of various bitter substances including quinine-HCl, naringin, theobromine, caffeine, glycyl-L-phenylalanine (Gly-Phe), and denatonium benzoate, whereas several other proteins, such as ovalbumin (OVA) and beta-lactoglobulin, were ineffective in reducing bitterness of these same compounds. Both the bitter tastes of quinine and caffeine were reduced following an oral prerinse with RBP. It was found that RBP binds to quinine but not to caffeine, theobromine, naringin, and Gly-Phe. However, the binding of RBP to quinine was probably not responsible for the bitter inhibition because OVA bound to quinine as well as RBP. Based on these results, it is suggested that the bitter inhibitory effect of RBP is the consequence of its ability to interact with taste receptors rather than because it interacts with the bitter tastants themselves. RBP may have practical uses in reducing bitterness of foods and pharmaceuticals. It may also prove a useful tool in studies of mechanisms of bitter taste.  相似文献   

13.
Earlier, a family of G protein-coupled receptors, termed T2Rs, was identified in the rodent and human genomes through data mining. It was suggested that these receptors mediate bitter taste perception. Analysis of the human genome revealed that the hT2R family is composed of 25 members. However, bitter ligands have been identified for only three human receptors so far. Here we report identification of two novel ligand-receptor pairs. hT2R61 is activated by 6-nitrosaccharin, a bitter derivative of saccharin. hT2R44 is activated by denatonium and 6-nitrosaccharin. Activation profiles for these receptors correlate with psychophysical data determined for the bitter compounds in human studies. Functional analysis of hT2R chimeras allowed us to identify residues in extracellular loops critical for receptor activation by ligands. The discovery of two novel bitter ligand-receptor pairs provides additional support for the hypothesis that hT2Rs mediate a bitter taste response in humans.  相似文献   

14.
Some components of bitterness make key flavor contributions to promote the palatability of foods, whereas other components are recognized as aversive signals to avoid consuming harmful substances. These contradictory behaviors suggest that humans tolerate tastes of bitterants based on certain criteria. Here, we investigated human taste tolerance and sensory cues leading to diverse taste tolerance of bitter compounds. Tolerance of eight bitter compounds, which are typically contained in foods, was evaluated by measuring detection and rejection thresholds. The results revealed that the level of tolerance of each compound was variable, and some compounds showed an acceptable concentration regarding the suprathreshold intensity. Tolerance did not depend on the nutritive value or attenuation and accumulation characteristics of bitterness and bitter taste receptors. These results suggest that the criteria controlling tolerance of bitter compounds may be derived from a complex relationship between the taste quality and cognitive process.  相似文献   

15.
Individual differences in perception are ubiquitous within the chemical senses: taste, smell, and chemical somesthesis . A hypothesis of this fact states that polymorphisms in human sensory receptor genes could alter perception by coding for functionally distinct receptor types . We have previously reported evidence that sequence variants in a presumptive bitter receptor gene (hTAS2R38) correlate with differences in bitterness recognition of phenylthiocarbamide (PTC) . Here, we map individual psychogenomic pathways for bitter taste by testing people with a variety of psychophysical tasks and linking their individual perceptions of the compounds PTC and propylthiouracil (PROP) to the in vitro responses of their TAS2R38 receptor variants. Functional expression studies demonstrate that five different haplotypes from the hTAS2R38 gene code for operatively distinct receptors. The responses of the three haplotypes we also tested in vivo correlate strongly with individuals' psychophysical bitter sensitivities to a family of compounds. These data provide a direct molecular link between heritable variability in bitter taste perception to functional variations of a single G protein coupled receptor that responds to compounds such as PTC and PROP that contain the N-C=S moiety. The molecular mechanisms of perceived bitterness variability have therapeutic implications, such as helping patients to consume beneficial bitter-tasting compounds-for example, pharmaceuticals and selected phytochemicals.  相似文献   

16.
Taste receptors play a crucial role in detecting the presence of bitter compounds such as alkaloids, and help to prevent the ingestion of toxic food. In Drosophila, we show for the first time that several taste sensilla on the prothoracic legs detect bitter compounds both through the activation of specific taste neurons but also through inhibition of taste neurons activated by sugars and water. Each sensillum usually houses a cluster of four taste neurons classified according to their best stimulus (S for sugar, W for Water, L1 and L2 for salts). Using a new statistical approach based on the analysis of interspike intervals, we show that bitter compounds activate the L2 cell. Bitter-activated L2 cells were excited with a latency of at least 50 ms. Their sensitivity to bitter compounds was different between sensilla, suggesting that specific receptors to bitter compounds are differentially expressed among L2 cells. When presented in mixtures, bitter compounds inhibited the responses of S and W, but not the L1 cell. The inhibition was effective even in sensilla where bitter compounds did not activate the L2 cell, indicating that bitter compounds directly interact with the S and W cells. Interestingly, this inhibition occurred with latencies similar to the excitation of bitter-activated L2 cells. It suggests that the inhibition in the W and S cells shares similar transduction pathways with the excitation in the L2 cells. Combined with molecular approaches, the results presented here should provide a physiological basis to understand how bitter compounds are detected and discriminated.  相似文献   

17.
The taste-active hydrophobic compounds in a charcoal-untreated sake sample were subjected to a taste dilution analysis (TDA). All of the high-TDA factor fractions showed a bitter or astringent taste in common, but their taste characters were different. The taste-active compounds of the high-TDA factor fractions were purified by taste-guided fractionation, using RP-HPLC and an instrumental analysis. From each of the seven fractions, ferulic acid, ethyl ferulate, tryptophol, three previously reported bitter-tasting peptides, and two novel ethyl esters of the peptides of 10 amino acid residues were identified. All the identified compounds had a similar taste character to that of the TDA fractions analyzed. Ethyl ferulate and the ethyl ester of the peptides showed a moderately bitter taste. The concentration of the identified compounds in seven jyunmai-type sake samples was determined. This concentration was decreased dose dependently by a charcoal treatment which is commonly applied in the final step of sake manufacture, notably with the compounds of high hydrophobicity.  相似文献   

18.
《Journal of Asia》2021,24(3):749-758
Bitter gourd (Momordica charantia L.) has compounds that repel insect pests. Unlike conventional pesticides, these compounds are eco-friendly and beneficial for human health. However the mechanisms by which these compounds repel insects and affect their physiology remains poorly known. Here we used Drosophila melanogaster (Meigen) to address these issues. We tested a wild strain, and a laboratory bred Canton S strain. Bitter gourd extract reduced the viability of developing flies, but did not affect survival in adults. Flies avoided bitter gourd extract in a food choice assay, and consumed a significantly low amount of food mixed with bitter gourd – indicating that it acts as an antifeedant. Transgenic flies with impaired aversive taste sensitive neurons showed a reduced aversion towards bitter gourd extract showing that these compounds act through the bitter sensitive gustatory neurons. Finally, flies also retained the memory of consuming bitter gourd extract for at least 24 hours, suggesting an additional cognitive mechanism for long term aversion. Our study provides the first evidence of bitter gourd compounds acting as antifeedants and also as potent reinforcers of aversive memory in drosophilids. We suggest that flies can be used to understand the physiological and neural mechanisms underlying the mode of action of other such phyto-extracts with the goal of developing potent but less harmful pest control formulations.  相似文献   

19.
The ability to taste low concentrations of propylthiouracil(PROP) and related bitter compounds is heritable. The currentanalysis determines whether the distribution of PROP taste thresholdsis consistent with an additive or a dominant mode of Mendeliantransmission. To that end, the lowest concentration of PROPdetectable was determined for 1015 subjects and models of bi-or tri-modal distributions of PROP taste thresholds were tested.The model with the greatest likelihood had three distributionsand followed an additive model of PROP taste sensitivity ifthe variances associated with the distributions were assumedto be equal. However, if the taste thresholds were transformedto remove skewness, or if the variances were unequal, then three-or two-distribution models were equally likely. Resolution ofthe mode of inheritance for bitter taste perception awaits additionalfamily studies and the characterization of the molecular basisof taste perception for these bitter compounds. Chem. Senses20: 529–533, 1995.  相似文献   

20.
Sweet and bitter tastants specific detection by cell-based sensor is investigated in this paper. Human enteroendocrine NCI-H716 cells, expressing G protein-coupled receptors and sweet receptors (type 1, member 2/type 1, member 3), and human enteroendocrine STC-1 cells, expressing G protein-coupled receptors and bitter receptors (type 2 members) are used as sensing devices. The HEK-293 cells, without taste receptor expression, are used as negative control. The electrochemical impedance spectrum data is recorded and processed by bistable stochastic resonance for signal-to-noise ratio calculation. NCI-H716 cell-based sensor selectively responds to sweeteners and sweet tastant mixtures. STC-1 cell-based sensor selectively responds to bitter tastants and bitter tastant mixtures. The tastants species and concentrations can be decided by signal-to-noise ratio parameters. HEK-293 cell-based sensor lacks the tastants discriminating ability. The taste cell-based sensor is easy to prepare and operate. This work offers a useful way in gustatory mechanism research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号