首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sonic hedgehog (Shh) has been proposed to function as an inductive and trophic signal that controls development of epaxial musculature in vertebrate embryos. In contrast, development of hypaxial muscles was assumed to occur independently of Shh. We here show that formation of limb muscles was severely affected in two different mouse strains with inactivating mutations of the Shh gene. The limb muscle defect became apparent relatively late and initial stages of hypaxial muscle development were unaffected or only slightly delayed. Micromass cultures and cultures of tissue fragments derived from limbs under different conditions with or without the overlaying ectoderm indicated that Shh is required for the maintenance of the expression of myogenic regulatory factors (MRFs) and, consecutively, for the formation of differentiated limb muscle myotubes. We propose that Shh acts as a survival and proliferation factor for myogenic precursor cells during hypaxial muscle development. Detection of a reduced but significant level of Myf5 expression in the epaxial compartment of somites of Shh homozygous mutant embryos at E9.5 indicated that Shh might be dispensable for the initiation of myogenesis both in hypaxial and epaxial muscles. Our data suggest that Shh acts similarly in both somitic compartments as a survival and proliferation factor and not as a primary inducer of myogenesis.  相似文献   

2.
TRIF is a member of the innate immune system known to be involved in viral recognition and type I IFN activation. Because IFNs are thought to play an important role in viral myocarditis, we investigated the role of TRIF in induced myocarditis in mice. Whereas C57BL/6 (wild-type) mice showed only mild myocarditis, including normal survival postinfection with coxsackievirus group B serotype 3 (CVB3), infection of TRIF(-/-) mice led to the induction of cardiac remodeling, severe heart failure, and 100% mortality (p < 0.0001). These mice showed markedly reduced virus control in cardiac tissues and cardiomyocytes. This was accompained with dynamic cardiac cytokine activation in the heart, including a suppression of the antiviral cytokine IFN-β in the early viremic phase. TRIF(-/-) myocytes displayed a TLR4-dependent suppression of IFN-β, and pharmacological treatment of CVB3-infected TRIF(-/-) mice with murine IFN-β led to improved virus control and reduced cardiac inflammation. Additionally, this treatment within the viremic phase of myocarditis showed a significant long-term outcome indexed by reduced mortality (20 versus 100%; p < 0.001). TRIF is essential toward a cardioprotection against CVB3 infection.  相似文献   

3.
4.
5.
6.
7.
Cytokines that are related to ciliary neurotrophic factor (CNTF) are physiologically important survival factors for motoneurons, but the mechanisms by which they prevent neuronal cell death remain unknown. Reg-2/PAP I (pancreatitis-associated protein I), referred to here as Reg-2, is a secreted protein whose expression in motoneurons during development is dependent on cytokines. Here we show that CNTF-related cytokines induce Reg-2 expression in cultured motoneurons. Purified Reg-2 can itself act as an autocrine/paracrine neurotrophic factor for a subpopulation of motoneurons, by stimulating a survival pathway involving phosphatidylinositol-3-kinase, Akt kinase and NF-kappaB. Blocking Reg-2 expression in motoneurons using Reg-2 antisense adenovirus specifically abrogates the survival effect of CNTF on cultured motoneurons, indicating that Reg-2 expression is a necessary step in the CNTF survival pathway. Reg-2 shows a unique pattern of expression in late embryonic spinal cord: it is progressively upregulated in individual motoneurons on a cell-by-cell basis, indicating that only a fraction of motoneurons in a given motor pool may be exposed to cytokines. Thus, Reg-2 is a neurotrophic factor for motoneurons, and is itself an obligatory intermediate in the survival signalling pathway of CNTF-related cytokines.  相似文献   

8.
NEK2 is a serine/threonine kinase that promotes centrosome splitting and ensures correct chromosome segregation during the G2/M phase of the cell cycle, through phosphorylation of specific substrates. Aberrant expression and activity of NEK2 in cancer cells lead to dysregulation of the centrosome cycle and aneuploidy. Thus, a tight regulation of NEK2 function is needed during cell cycle progression. In this study, we found that NEK2 localizes in the nucleus of cancer cells derived from several tissues. In particular, NEK2 co-localizes in splicing speckles with SRSF1 and SRSF2. Moreover, NEK2 interacts with several splicing factors and phosphorylates some of them, including the oncogenic SRSF1 protein. Overexpression of NEK2 induces phosphorylation of endogenous SR proteins and affects the splicing activity of SRSF1 toward reporter minigenes and endogenous targets, independently of SRPK1. Conversely, knockdown of NEK2, like that of SRSF1, induces expression of pro-apoptotic variants from SRSF1-target genes and sensitizes cells to apoptosis. Our results identify NEK2 as a novel splicing factor kinase and suggest that part of its oncogenic activity may be ascribed to its ability to modulate alternative splicing, a key step in gene expression regulation that is frequently altered in cancer cells.  相似文献   

9.
10.
Saito Y  Kojima T  Takahashi N 《PloS one》2012,7(3):e32991
During mouse embryogenesis, proper formation of the heart and liver is especially important and is crucial for embryonic viability. In this study, we showed that Mab21l2 was expressed in the trabecular and compact myocardium, and that deletion of Mab21l2 resulted in a reduction of the trabecular myocardium and thinning of the compact myocardium. Mab21l2-deficient embryonic hearts had decreased expression of genes that regulate cell proliferation and apoptosis of cardiomyocytes. These results show that Mab21l2 functions during heart development by regulating the expression of such genes. Mab21l2 was also expressed in the septum transversum mesenchyme (STM). Epicardial progenitor cells are localized to the anterior surface of the STM (proepicardium), and proepicardial cells migrate onto the surface of the heart and form the epicardium, which plays an important role in heart development. The rest of the STM is essential for the growth and survival of hepatoblasts, which are bipotential progenitors for hepatocytes and cholangiocytes. Proepicardial cells in Mab21l2-deficient embryos had defects in cell proliferation, which led to a small proepicardium, in which α4 integrin expression, which is essential for the migration of proepicardial cells, was down-regulated, suggesting that defects occurred in its migration. In Mab21l2-deficient embryos, epicardial formation was defective, suggesting that Mab21l2 plays important roles in epicardial formation through the regulation of the cell proliferation of proepicardial cells and the migratory process of proepicardial cells. Mab21l2-deficient embryos also exhibited hypoplasia of the STM surrounding hepatoblasts and decreased hepatoblast proliferation with a resultant loss of defective morphogenesis of the liver. These findings demonstrate that Mab21l2 plays a crucial role in both heart and liver development through STM formation.  相似文献   

11.
Zebrafish neuroglobin is a cell-membrane-penetrating globin   总被引:1,自引:0,他引:1  
Watanabe S  Wakasugi K 《Biochemistry》2008,47(19):5266-5270
Neuroglobin (Ngb) is a recently discovered vertebrate heme protein that is expressed in the brain and can reversibly bind oxygen. Mammalian Ngb is involved in neuroprotection under oxidative stress conditions, such as ischemia and reperfusion. We previously demonstrated that human ferric Ngb binds to the alpha subunit of heterotrimeric G proteins (Galphai) and acts as a guanine nucleotide dissociation inhibitor (GDI) for Galphai. Recently, we used a protein delivery reagent, Chariot, and demonstrated that the GDI activity of human Ngb is tightly correlated with its neuroprotective activity. In the present study, we found that chimeric ZHHH Ngb, in which module M1 of human Ngb is replaced by that of zebrafish Ngb, protects PC12 cells against oxidative stress-induced cell death even in the absence of Chariot. Using fluorescein isothiocyanate (FITC)-labeled Ngb proteins, we demonstrated that both zebrafish and chimeric ZHHH Ngb can penetrate cell membranes in the absence of Chariot, suggesting that module M1 of zebrafish Ngb can translocate into cells. This is the first report of a native cell-membrane-penetrating globin.  相似文献   

12.
13.
14.
Migration of neural cells to their final positions is crucial for the correct formation of the central nervous system. Several extrinsic factors are known to be involved in the regulation of neural migration. We asked if stem cell factor (SCF), well known as a chemoattractant and survival factor in the hematopoietic lineage, could elicit similar responses in neural stem cells. For that purpose, a microchemotaxis assay was used to study the effect of SCF on migration of neural stem cells from the embryonic rat cortex. Our results show that SCF-induced chemotaxis and that specific antibodies to SCF or tyrosine kinase inhibitors abolished the migratory response. The SCF-receptor, Kit, was expressed in neural stem cells and in their differentiated progeny. We also show that SCF is a survival factor, but not a mitogen or a differentiation factor for neural stem cells. These data suggest a role for SCF in cell migration and survival in the developing cortex.  相似文献   

15.
Wnt activity is critical in craniofacial morphogenesis. Dysregulation of Wnt/β-catenin signaling results in significant alterations in the facial form, and has been implicated in cleft palate phenotypes in mouse and man. In zebrafish, we show that wnt9a is expressed in the pharyngeal arch, oropharyngeal epithelium that circumscribes the ethmoid plate, and ectodermal cells superficial to the lower jaw structures. Alcian blue staining of morpholino-mediated knockdown of wnt9a results in loss of the ethmoid plate, absence of lateral and posterior parachordals, and significant abrogation of the lower jaw structures. Analysis of cranial neural crest cells in the sox10:eGFP transgenic demonstrates that the wnt9a is required early during pharyngeal development, and confirms that the absence of Alcian blue staining is due to absence of neural crest derived chondrocytes. Molecular analysis of genes regulating cranial neural crest migration and chondrogenic differentiation suggest that wnt9a is dispensable for early cranial neural crest migration, but is required for chondrogenic development of major craniofacial structures. Taken together, these data corroborate the central role for Wnt signaling in vertebrate craniofacial development, and reveal that wnt9a provides the signal from the pharyngeal epithelium to support craniofacial chondrogenic morphogenesis in zebrafish.  相似文献   

16.
Qiu LX  Wang Y  Xia ZG  Xi B  Mao C  Wang JL  Wang BY  Lv FF  Wu XH  Hu LQ 《Cytokine》2011,56(3):589-592
Published data on the association between miR-196a2 T/C polymorphism and cancer susceptibility are inconclusive. To derive a more precise estimation of the relationship, a meta-analysis was performed. A total of 21 studies including 10,441 cases and 12,353 controls were involved in this meta-analysis. Overall, significantly elevated cancer risk was associated with miR-196a2 C allele when all studies were pooled into the meta-analysis (TC vs. TT: OR=1.23, 95% CI=1.11-1.36; CC vs. TT: OR=1.30, 95% CI=1.14-1.48; dominant model: OR=1.25, 95% CI=1.13-1.38). In the subgroup analysis by ethnicity, significantly increased risks were found in Asains (TC vs. TT: OR=1.24, 95% CI=1.10-1.40; CC vs. TT: OR=1.31, 95% CI=1.13-1.52; dominant model: OR=1.26, 95% CI=1.12-1.41) but with bordline statistical significance in Caucasians (TC vs. TT: OR=1.15, 95% CI=1.00-1.31). In the subgroup analysis by cancer type, statistically significantly increased risks were found for breast cancer (TC vs. TT: OR=1.15, 95% CI=1.01-1.31; CC vs. TT: OR=1.30, 95% CI=1.01-1.68; dominant model: OR=1.22, 95% CI=1.00-1.50; and recessive model: OR=1.11, 95% CI=1.01-1.23) and lung cancer (CC vs. TT: OR=1.30, 95% CI=1.10-1.54; and recessive model: OR=1.18, 95% CI=1.02-1.36). When stratified by study design, statistically significantly elevated risk was found in hospital-based studies (TC vs. TT: OR=1.30, 95% CI=1.13-1.49; CC vs. TT: OR=1.37, 95% CI=1.14-1.66; dominant model: OR=1.32, 95% CI=1.15-1.53) and population-based studies (CC vs. TT: OR=1.19, 95% CI=1.06-1.35; dominant model: OR=1.13, 95% CI=1.01-1.25). Despite some limitations, this meta-analysis suggests that the miR-196a2 C allele is a low-penetrant risk factor for cancer development.  相似文献   

17.
18.
Zebrafish cypher is important for somite formation and heart development   总被引:4,自引:0,他引:4  
Mammalian CYPHER (Oracle, KIA0613), a member of the PDZ-LIM family of proteins (Enigma/LMP-1, ENH, ZASP/Cypher, RIL, ALP, and CLP-36), has been associated with cardiac and muscular myopathies. Targeted deletion of Cypher in mice is neonatal lethal possibly caused by myopathies. To further investigate the role of cypher in development, we have cloned the zebrafish orthologue. We present here the gene, domain structure, and expression pattern of zebrafish cypher during development. Cypher was not present as a maternal mRNA and was absent during early development. Cypher mRNA was first detected at the 3-somite stage in adaxial somites, and as somites matured, cypher expression gradually enveloped the whole somite. Later, cypher expression was also found in the heart, in head and jaw musculature, and in the brain. We further identified 13 alternative spliced forms of cypher from zebrafish heart and skeletal muscle tissue, among them a very short form containing the PDZ domain but lacking the ZM (ZASP-like) motif and the LIM domains. Targeted gene knock-down experiments using cypher antisense morpholinos led to severe defects, including truncation of the embryo, deformation of somites, dilatation of the pericardium, and thinning of the ventricular wall. The phenotype could be rescued by a cypher form, which contains the PDZ domain and the ZM motif, but lacks all three LIM domains. These findings indicate that a PDZ domain protein is important for normal somite formation and in normal heart development. Treatment of zebrafish embryos with cyclopamine, which disrupts hedgehog signaling, abolished cypher expression in 9 somite and 15-somite stage embryos. Taken together, our data suggest that cypher may play a role downstream of sonic hedgehog, in a late stage of somite development, when slow muscle fibers differentiate and migrate from the adaxial cells.  相似文献   

19.
Interleukin-6 (IL-6) is a major survival factor for malignant plasma cells. In patients with multiple myeloma (MM), cell lines whose survival and proliferation are dependent upon addition of exogenous IL-6 have been obtained. We show here that tumor necrosis factor-alpha (TNF-alpha) is also a survival factor for myeloma cell lines, although less potent than IL-6. The survival activity of TNF-alpha is not affected by anti-IL-6 or anti-gp130 monoclonal antibodies (mAbs). TNF-alpha also induces myeloma cells in the cell cycle and promotes the long-term growth of malignant plasma cell lines. As TNF-alpha is produced in patients with MM and associated with a poor prognosis, these results suggest that anti-TNF-alpha therapies could be useful in this disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号