首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe the monoxenous trypanosomatids parasitizing true bugs and flies on the island of Curaçao. Out of 248 examined true bugs belonging to 17 species, 93 individuals were found to be infected (overall 38% prevalence) by at least one trypanosomatid species (referred to as typing units; TUs). Out of 80 flies, six were infected. All detected trypanosomatids were compared based on their 18S rRNA sequences with TUs parasitizing bugs and flies described from mainland South America, allowing us to assess their diversity and distribution. Besides Leptomonas pyrrhocoris and Leptomonas seymouri, two known species of the subfamily Leishmaniinae, our analysis revealed six new TUs falling into the groups ‘jaculum’, Blastocrithidia and Herpetomonas. Moreover, two new members of the genus Phytomonas and three new TUs belonging to the monophyletic group designated as ‘new clade II’ sensu Mol. Phylogenet. Evol, 69, 255 (2013) were isolated. The detected trypanosomatids were characterized by moderate diversity (13 TUs) species richness. Out of nine and four TUs from the heteropteran and dipteran hosts, respectively, 11 TUs have not been encountered before. Although a sampling bias may partially affect the comparison between trypanosomatid communities on Curaçao and the mainland, the high proportion of unique TUs from the former location suggests that the prominent role of islands in increasing the global diversity of macroscopic organisms may also extend to their protistan parasites.  相似文献   

2.
The extreme biological diversity of Oceanian archipelagos has long stimulated research in ecology and evolution. However, parasitic protists in this geographic area remained neglected and no molecular analyses have been carried out to understand the evolutionary patterns and relationships with their hosts. Papua New Guinea (PNG) is a biodiversity hotspot containing over 5% of the world's biodiversity in less than 0.5% of the total land area. In the current work, we examined insect heteropteran hosts collected in PNG for the presence of trypanosomatid parasites. The diversity of insect flagellates was analysed, to our knowledge for the first time, east of Wallace's Line, one of the most distinct biogeographic boundaries of the world. Out of 907 investigated specimens from 138 species and 23 families of the true bugs collected in eight localities, 135 (15%) were infected by at least one trypanosomatid species. High species diversity of captured hosts correlated with high diversity of detected trypanosomatids. Of 46 trypanosomatid Typing Units documented in PNG, only eight were known from other geographic locations, while 38 TUs (~83%) have not been previously encountered. The widespread trypanosomatid TUs were found in both widely distributed and endemic/sub-endemic insects. Approximately one-third of the endemic trypanosomatid TUs were found in widely distributed hosts, while the remaining species were confined to endemic and sub-endemic insects. The TUs from PNG form clades with conspicuous host-parasite coevolutionary patterns, as well as those with a remarkable lack of this trait. In addition, our analysis revealed new members of the subfamilies Leishmaniinae and Strigomonadinae, potentially representing new genera of trypanosomatids.  相似文献   

3.
We have determined the sequences of 5S rRNA and spliced leader (SL) RNA genes, and adjacent intergenic regions for representatives of all known trypanosomatid genera parasitizing insects. The genetic loci have been analyzed separately as well as by a combined approach. Several isolates, assigned by morphology to different genera (Leptomonas spp., Blastocrithidia spp.), seem to belong to a single species with an unexpectedly wide host and geographical range. An unnamed trypanosomatid isolated from rats in Egypt was found to belong to the genus Herpetomonas, so far associated with insect hosts only. It is closely related to Herpetomonas ztiplika, a parasite of a blood-sucking biting midge. Apparently several different trypanosomatid species can infect one insect species, as exemplified by Leptomonas sp. PL and Wallaceina sp. Wsd, which were isolated from different specimens of Salda littoralis on the same locality and day. However, since the same species of Leptomonas was obtained from insect hosts belonging to different genera, some insect trypanosomatids may have low host specificity. Our data revealed additional discrepancies between molecular phylogenetic data and cell morphology, rendering current trypanosomatid taxonomy unreliable.  相似文献   

4.
5.
In this paper we describe a method for the detection of Phytomonas spp. from plants and phytophagous insects using the PCR technique by targeting a genus-specific sequence of the spliced leader (SL) gene. PCR amplification of DNA from 48 plant and insect isolates previously classified as Phytomonas by morphological, biochemical, and molecular criteria resulted in all cases in a 100-bp fragment that hybridized with the Phytomonas-specific spliced leader-derived probe SL3'. Moreover, this Phytomonas-specific PCR could also detect Phytomonas spp. in crude preparations of naturally infected plants and insects. This method shows no reaction with any other trypanosomatid genera or with plant and insect host DNA, revealing it to be able to detect Phytomonas spp. from fruit, latex, or phloem of various host plants as well as from salivary glands and digestive tubes of several species of insect hosts. Results demonstrated that SLPCR is a simple, fast, specific, and sensitive method that can be applied to the diagnosis of Phytomonas among cultured trypanosomatids and directly in plants and putative vector insects. Therefore, the method was shown to be a very specific and sensitive tool for diagnosis of Phytomonas without the need for isolation, culture, and DNA extraction of flagellates, a feature that is very convenient for practical and epidemiological purposes.  相似文献   

6.
From 10 trypanosomatids genera six comprise monogenetic parasites of insects and for the rest of four genera insects may serve as vectors. The invertebrate host is an essential element of trypanosomatids life cycle, but from more than 900 recognised vertebrate hosts only about 500 species of insects have been discovered to be the hosts of homoxenous trypanosomatids. Nothing or very little is known about insect trypanosomatids in many extensive areas such as South East Asia, Australia, Japan and some others. Each new region explored brings many new findings. Recently flagellates were found in new insect species and families. The border of parasites distribution was expanded till Central Asia, Far East and North over the Polar Circle. As paleogeographical events are now under contemplating in trypanosomatids phylogeny researches so northern insect trypanosomatids may attract some attention as the elements of postglacial fauna which is definitely young. Very broad host specificity of insect trypanosomatids and high probability to isolate non-specific parasite show causes that only the investigation of a culture may solve the question 'what parasite was really isolated?'. Examination of cell morphotypes in the host has clearly demonstrated that they are not sufficient for classification and may lead us to be mistaken. The number of insect trypanosomatid cultures is inadequate for characterisation of the diversity of insects trypanosomatids. Trypanosoma is actually the only trypanosomatid genus which is out of questions. Insect trypanosomatids comprise the most diversified part of trypanosomatids evolutionary tree. Recent ssrRNA phylogenetic analysis and morphological data show that three insect isolates represent new lineages on trypanosomatid evolutionary tree, as well as dendrograms derived from PCR data demonstrated some new groups of isolates. Therefore, the more insect trypanosomatids are involved in laboratory investigations--the more new clusters or/and new lineages are appearing on the tree.  相似文献   

7.
ABSTRACT. We have surveyed 244 hemipterans from Western Brazilian Amazônia for the presence of trypanosomatids and identification of members of the genus Phytomonas. Examination by phase microscopy of squashes of insect salivary glands (SG) and digestive tubes (DT) revealed that 44% (108/244) of insects from seven families harbored trypanosomatids. Infections were 5 times more frequent in Coreidae than in all other families together. Smears of SG and DT of the dissected insects were fixed on glass slides with methanol and stained with Giemsa for morphological analysis. DNA was recovered from these preparations and submitted to a PCR assay that permitted amplification of all trypanosomatid genera using primers of conserved sequences flanking a segment of the spliced leader (SL) gene. Upon PCR amplification of the recovered DNA, amplicons were hybridized with an oligonucletide probe (SL3′) complementary to a SL intron sequence specific for flagellates of the genus Phytomonas. Among the trypanosomatid‐positive insects, 38.8% harbored Phytomonas spp., corresponding to an overall Phytomonas prevalence of 17.1% among phytophagous bugs, their putative vectors. Since many Phytomonas are pathogenic in plants, this high prevalence in their vectors emphasizes the permanent risk of exposure to disease by native and cultured plants of the Amazon region.  相似文献   

8.
Trypanosomatid diversity in Heteroptera was sampled using a culture-independent approach based on amplification and sequencing of Spliced Leader RNA gene repeats from environmental samples. By combining the data collected herein with that of previous work, the prevalence of parasites was found to be 22%-23%. Out of approximately 170 host species investigated nearly 60 were found to harbor trypanosomatids. The parasites found were grouped by cluster analysis into 48 typing units. Most of these were well separated from the known groups and, therefore, likely represent new trypanosomatid species. The sequences for each typing unit serve as barcodes to facilitate their recognition in the future. As the sampled host species represent a minor fraction of potential hosts, the entire trypanosomatid diversity is far greater than described thus far. Investigations of trypanosomatid diversity, host-specificity, and biogeography have become feasible using the approach described herein.  相似文献   

9.
An investigation of transmission and ecology of the monogenetic trypanosomatids, Blastocrithidia gerridis and Crithidia flexonema , in Gerris is described. Motile free-living flagellates of both species were found in the faeces of Gerris and in the water on which the bugs inhabited. Transmission of both trypanosomatid species occurred from naturally infected wild-caught bugs to flagellate-free laboratory-bred bugs via water. Crithidia flexonema was also transmitted to laboratory-bred bugs after being isolated in culture. Observations of experimentally infected bugs indicate that C. flexonema flagellates are imbibed and pass through the fore- and midgut to the hindgut where they become attached and multiply. There was no evidence to suggest transovarial transmission. In a 3-yr investigation into the prevalence of trypanosomatids in a natural population of adult Gerris odontogaster , it was found that the infection rate varied between 19% and 100%. There was no significant difference in infection rates between females and males. The infection rate peaked for each year in late spring or early summer. The significance of these results is discussed in relation to the ecology and behaviour of Gerris . The results indicate that the infections are maintained in hibernating bugs over winter.  相似文献   

10.
An investigation of transmission and ecology of the monogenetic trypanosomatids, Blastocrithidia gerridis and Crithidia flexonema, in Gerris is described. Motile free-living flagellates of both species were found in the faeces of Gerris and in the water on which the bugs inhabited. Transmission of both trypanosomatid species occurred from naturally infected wild-caught bugs to flagellate-free laboratory-bred bugs via water. Crithidia flexonema was also transmitted to laboratory-bred bugs after being isolated in culture. Observations of experimentally infected bugs indicate that C. flexonema flagellates are imbibed and pass through the fore- and midgut to the hindgut where they become attached and multiply. There was no evidence to suggest transovarial transmission. In a 3-yr investigation into the prevalence of trypanosomatids in a natural population of adult Gerris odontogaster, it was found that the infection rate varied between 19% and 100%. There was no significant difference in infection rates between females and males. The infection rate peaked for each year in late spring or early summer. The significance of these results is discussed in relation to the ecology and behaviour of Gerris. The results indicate that the infections are maintained in hibernating bugs over winter.  相似文献   

11.
The expanding phylogenetic tree of trypanosomatid flagellates (Kinetoplastea: Trypanosomatidae) contains a long-known and phylogenetically well-supported species-rich lineage that was provisionally named as the ‘jaculum’ clade. Its members were found in representatives of several unrelated families of heteropteran bugs captured in South and Central America, Europe, Africa, and Asia. However, this group resisted introduction into the culture, a needed prerequisite for its proper characterization. Here we describe four new cultivable species, which parasitize various parts of their hosts’ intestine, including the thoracic and abdominal part of the midgut, hindgut, and Malpighian tubules. Morphologically, the cultured flagellates vary from relatively short stumpy promastigotes to long slender leptomonad cells. Some species form straphangers (cyst-like amastigotes) both in vivo and in vitro, initially attached to the basal part of the flagellum of the mother cell, from which they subsequently detach. To formally classify this enigmatic monophyletic cosmopolitan clade, we erected Obscuromonas gen. nov., including five species: O. modryi sp. nov. (isolated from the true bug host species Riptortus linearis captured in the Philippines), O. volfi sp. nov. (from Catorhintha selector, Curaçao), O. eliasi sp. nov. (from Graptostethus servus, Papua New Guinea), O. oborniki sp. nov. (from Aspilocoryphus unimaculatus, Madagascar), and O. jaculum comb. nov. (from Nepa cinerea, France). Obscuromonas along with the genus Blastocrithidia belongs to the newly established Blastocrithidiinae subfam. nov.  相似文献   

12.
With the aim of further investigating phylogenetic relationships in insect trypanosomatids, we have determined the sequences of small subunit rRNA genes from ten isolates, which were originally classified as Leptomonas, Blastocrithidia, and Wallaceina based on their morphology in the hosts. The inferred maximum likelihood, parsimony, and distance trees indicate that the Leptomonas and Blastocrithidia are polyphyletic, and confirm the polyphyly of Herpetomonas and Crithidia. Blastocrithidia triatoma and Leptomonas collosoma were among the earliest branching lineages among the insect trypanosomatids, while most other isolates were found within a closely related terminal clade, which also included Crithidia fasciculata. This analysis has clearly demonstrated that the morphological classification system of insect trypanosomatids does not always reflect their genetic affinities warranting its revision in the future.  相似文献   

13.
We generated the first complete phylogeny of extant taxa in a well-defined clade of 26 starling species that is collectively distributed across Eurasia, and which has one species endemic to sub-Saharan Africa. Two species in this group-the European starling Sturnus vulgaris and the common Myna Acridotheres tristis-now occur on continents and islands around the world following human-mediated introductions, and the entire clade is generally notable for being highly social and dispersive, as most of its species breed colonially or move in large flocks as they track ephemeral insect or plant resources, and for associating with humans in urban or agricultural landscapes. Our reconstructions were based on substantial mtDNA (4 kb) and nuclear intron (4 loci, 3 kb total) sequences from 16 species, augmented by mtDNA NDII gene sequences (1 kb) for the remaining 10 taxa for which DNAs were available only from museum skin samples. The resulting mitochondrial gene tree embedded within a multilocus framework shows that the well-studied taxa S. vulgaris/unicolor are the sister lineage to the remaining members of the radiation, from which other relatively early lineages gave rise to forms that are now nomadic or locally migrant in Africa (Creatophora) and western Asia (Pastor). The remaining taxa form a clade with a complicated biogeographic history primarily in central and eastern Asia; this group contains a range of sedentary to highly migratory taxa, as well as widely distributed species and single-island endemics such as the highly endangered Bali myna (Leucopsar). Several groups of species in the genus Acridotheres have low magnitudes of within-group divergence and likely diversified via their respective colonization of islands. The taxonomy of this entire group has remained highly volatile over the past century; we propose dividing these 26 species among 11 reciprocally monophyletic genera (Acridotheres, Poliopsar, Temenuchus, Sturnornis, Leucopsar, Gracupica, Agropsar, Pastor, Creatophora, and Sturnus).  相似文献   

14.
15.
Flagellates of the class Kinetoplastea are known to frequently parasitize insects. We have collected 67 isolates from 407 Heteroptera hosts captured in several locations of South-West China. Their splice leader (SL) RNA gene repeats and small subunit (SSU) rRNA genes were PCR amplified from the infected tissue samples. In most cases, parasites were found in the midgut, rarely the infection was confined to the Malpighian tubes. Phylogenetic analysis of the obtained sequences has significantly expanded the known diversity of these monoxenous parasites. Fifteen typing units were found among these isolates including 11 potentially new species. Four typing units matched the previously known typing units from the Neotropics indicating a global distribution of the respective parasite species. At the same time, new clades appeared, testifying for a certain level of endemism. The host record of the parasites found indicated a variable specificity level of the host–parasite association including several cases of a very broad host range. Our results disprove the “one host – one parasite” paradigm and show that although the global diversity of monoxenous parasites is high, it is not as enormous as suggested earlier. Moreover, phylogenetic analysis revealed the presence, among the isolated strains, of a new Phytomonas species, which is the first documentation of this potentially pathogenic dixenous parasite of plants in China.  相似文献   

16.
The insectivorous bug Zelus leucogrammus (Perty, 1834) (Hemiptera, Reduviidae) was found to harbor several species of trypanosomatids of the genera Leptomonas, Crithidia, Herpetomonas and Blastocrithidia. However, laboratory bred nymphs given sterile food were infected only by Blastocrithidia, the other flagellates appearing in their intestinal tract when they were fed on other insects. The Blastocrithidia was thought to belong to a single species and to be a parasite proper of Z. leucogrammus (and possibly other Hemiptera), producing luxuriant infections in the intestinal tract of the bugs captured in nature and spreading easily among isolated populations through cannibalism and ingestion of cysts; it was also abundant in the genital tract of gravid females but transovarian transmission was not proved. This Blastocrithidia experimentally infected Triatoma infestans and is very close to B. triatomae Cerisola, del Prado, Rohwedder and Bozzini, 1971. The other trypanosomatids, never numerous in naturally infected Z. leucogrammus, are acquired by the bug from many different insects, chiefly Diptera, on which it was seen to feed. Herpetomonas muscarum and C. luciliae, the common trypanosomatids among several muscoid Diptera, were isolated both from flies and from the bugs fed on them.  相似文献   

17.
Microbial parasites of animals include bacteria, viruses, and various unicellular eukaryotes. Because of the difficulty in studying these microorganisms in both humans and disease vectors, laboratory models are commonly used for experimental analysis of host-parasite interactions. Drosophila is one such model that has made significant contributions to our knowledge of bacterial, fungal, and viral infections. Despite this, less is known about other potential parasites associated with natural Drosophila populations. Here, we surveyed sixteen Drosophila populations comprising thirteen species from four continents and Hawaii and found that they are associated with an extensive diversity of trypanosomatids (Euglenozoa, Kinetoplastea). Phylogenetic analysis finds that Drosophila-associated trypanosomatids are closely related to taxa that are responsible for various types of leishmaniases and more distantly related to the taxa responsible for human African trypanosomiasis and Chagas disease. We suggest that Drosophila may provide a powerful system for studying the interactions between trypanosomatids and their hosts.  相似文献   

18.
We investigated the abundance and species richness of heteropteran bugs and explored environmental factors which influence bug diversity in three types of semi-natural habitats (wildflower areas, extensively used meadows, extensively grazed pastures). To cover this topic, it is essential to know how much the relatively young wildflower areas contribute to biodiversity compared with well-established extensive meadows and pastures. Total bug species richness and phytophagous bug species richness were significantly higher in wildflower areas and meadows than in pastures. In wildflower areas, we found the highest number of zoophagous bug species and species overwintering in the egg-stage. Species overwintering as adults were most abundant in meadows. Total number of bug species as well as species richness in either trophic groups and overwintering strategies were significantly positively correlated with vegetation structure. Except for overwintering strategies, the same was true to bug abundance. The bug community based on the number of individuals per species was significantly explained by flower abundance and vegetation structure, accounting for 18.4 and 16.8% of the variance, respectively. Our results indicate that vegetation structure and flower abundance are key factors for bug species richness, abundance and bug species composition. Since wildflower areas and meadows clearly increased bug species richness and contained several specialised bug species that did not occur in pastures, we recommend the promotion of wildflower areas and extensively used meadows in order to restore both high heteropteran diversity and overall insect biodiversity in agricultural landscapes.  相似文献   

19.
20.
More and more effects of trypanosomatids on insects have been recognized in the past few years. Here, Günter A. Schaub reviews such effects, classifying the flagellates according to the intensity of the effects on the insect host into pathogenic, subpathogenic and apathogenic trypanosomatids. He emphasizes that subpathogenic trypanosomatids which cause only minor effects under optimal conditions might act synergistically with natural stressors, thereby being an important regulatory factor in insect populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号