首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The proper formation of a complex multicellular organism requires the precise coordination of many cellular events, including cell proliferation, cell fate specification and differentiation. The C. elegans postembryonic mesodermal lineage, the M lineage, allows us to study mechanisms coordinating these events at single cell resolution. We have identified an HMX homeodomain protein MLS-2 in a screen for factors required for M lineage patterning. The MLS-2 protein is present in nuclei of undifferentiated cells in the early M lineage and in a subset of head neurons. In the M lineage, MLS-2 activity appears to be tightly regulated at the fourth round of cell division, coincident with the transition from proliferation to differentiation. A predicted null allele of mls-2, cc615, causes reduced cell proliferation in the M lineage, whereas a semi-dominant, gain-of-function allele, tm252, results in increased cell proliferation. Loss or overexpression of mls-2 also affects cleavage orientation and cell fate specification in the M lineage. We show that the increased cell proliferation in mls-2(tm252) mutants requires CYE-1, a G1 cell cycle regulator. Furthermore, the C. elegans Myod homolog HLH-1 acts downstream of mls-2 to specify M-derived coelomocyte cell fates. Thus MLS-2 functions in a cell type-specific manner to regulate both cell proliferation and cell fate specification.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
The genetic program that underlies the generation of visceral motoneurons in the developing hindbrain remains poorly defined. We have examined the role of Nkx6 and Nkx2 class homeodomain proteins in this process, and provide evidence that these proteins mediate complementary roles in the specification of visceral motoneuron fate. The expression of Nkx2.2 in hindbrain progenitor cells is sufficient to mediate the activation of Phox2b, a homeodomain protein required for the generation of hindbrain visceral motoneurons. The redundant activities of Nkx6.1 and Nkx6.2, in turn, are dispensable for visceral motoneuron generation but are necessary to prevent these cells from adopting a parallel program of interneuron differentiation. The expression of Nkx6.1 and Nkx6.2 is further maintained in differentiating visceral motoneurons, and consistent with this the migration and axonal projection properties of visceral motoneurons are impaired in mice lacking Nkx6.1 and/or Nkx6.2 function. Our analysis provides insight also into the role of Nkx6 proteins in the generation of somatic motoneurons. Studies in the spinal cord have shown that Nkx6.1 and Nkx6.2 are required for the generation of somatic motoneurons, and that the loss of motoneurons at this level correlates with the extinguished expression of the motoneuron determinant Olig2. Unexpectedly, we find that the initial expression of Olig2 is left intact in the caudal hindbrain of Nkx6.1/Nkx6.2 compound mutants, and despite this, all somatic motoneurons are missing. These data argue against models in which Nkx6 proteins and Olig2 operate in a linear pathway, and instead indicate a parallel requirement for these proteins in the progression of somatic motoneuron differentiation. Thus, both visceral and somatic motoneuron differentiation appear to rely on the combined activity of cell intrinsic determinants, rather than on a single key determinant of neuronal cell fate.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号