首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 608 毫秒
1.
The volatile-mediated impact of bacteria on plant growth is well documented, and contrasting effects have been reported ranging from 6-fold plant promotion to plant killing. However, very little is known about the identity of the compounds responsible for these effects or the mechanisms involved in plant growth alteration. We hypothesized that hydrogen cyanide (HCN) is a major factor accounting for the observed volatile-mediated toxicity of some strains. Using a collection of environmental and clinical strains differing in cyanogenesis, as well as a defined HCN-negative mutant, we demonstrate that bacterial HCN accounts to a significant extent for the deleterious effects observed when growing Arabidopsis thaliana in the presence of certain bacterial volatiles. The environmental strain Pseudomonas aeruginosa PUPa3 was less cyanogenic and less plant growth inhibiting than the clinical strain P. aeruginosa PAO1. Quorum-sensing deficient mutants of C. violaceum CV0, P. aeruginosa PAO1, and P. aeruginosa PUPa3 showed not only diminished HCN production but also strongly reduced volatile-mediated phytotoxicity. The double treatment of providing plants with reactive oxygen species scavenging compounds and overexpressing the alternative oxidase AOX1a led to a significant reduction of volatile-mediated toxicity. This indicates that oxidative stress is a key process in the physiological changes leading to plant death upon exposure to toxic bacterial volatiles.  相似文献   

2.
3.
Polar flagellated Pseudomonas aeruginosa PAO1 demonstrated extensive spreading growth in 2 days on 1.5% agar medium. Such spreading growth of P. aeruginosa PAO1 strains was absent on Luria-Bertani 1.5% agar medium, but remarkable on Davis minimal synthetic agar medium (especially that containing 0.8% sodium citrate and 1.5% Eiken agar) under aerobic 37 degrees C conditions. Analyses using isogenic mutants and complementation transformants showed that bacterial flagella and rhamnolipid contributed to the surface-spreading behavior. On the other hand, a type IV pilus-deficient pilA mutant did not lose the spreading growth activity. Flagella staining of PAO1 T cells from the frontal edge of a spreading colony showed unipolar and normal-sized rods with one or two flagella. Thus, the polar flagellate P. aeruginosa PAO1 T appears to swarm on high-agar medium by producing biosurfactant rhamnolipid and without differentiation into an elongated peritrichous hyperflagellate.  相似文献   

4.
Pseudomonas aeruginosa chronic lung infections are the major cause of morbidity and mortality in cystic fibrosis (CF) patients. The P. aeruginosa strains PAO1 and PA14 were compared with the Liverpool epidemic strain LESB58 to assess in vivo growth, infection kinetics, and bacterial persistence and localization within tissues in a rat model of chronic lung infection. The three P. aeruginosa strains demonstrated similar growth curves in vivo but differences in tissue distribution. The LESB58 strain persisted in the bronchial lumen, while the PAO1 and PA14 strains were found localized in the alveolar regions and grew as macrocolonies after day 7 postinfection. Bacterial strains were compared for swimming and twitching motility and for the production of biofilm. The P. aeruginosa LESB58 strain produced more biofilm than PAO1 and PA14. Competitive index (CI) analysis of PAO1, PA14, and LESB58 in vivo indicated CI values of 0.002, 0.0002, and 0.14 between PAO1-PA14, PAO1-LESB58, and LESB58-PA14, respectively. CI analysis comparing the in vivo growth of the PAO1 DeltaPA5441 mutant and four PA14 surface attachment-defective (sad) mutants gave CI values 10 to 1,000 times lower in competitions with their respective wild-type strains PAO1 and PA14. P. aeruginosa strains studied in the rat model of chronic lung infection demonstrated similar in vivo growth but differences in virulence as shown with a competitive in vivo assay. These differences were further confirmed with biofilm and motility in vitro assays, where strain LESB58 produced more biofilm but had less capacity for motility than PAO1 and PA14.  相似文献   

5.
Hydrogen cyanide (HCN) production by Pseudomonas aeruginosa in a synthetic medium is stimulated by the presence of glycine. Methionine enhances this stimulation but will not substitute for glycine as a stimulator of cyanogenesis. Threonine and phenylalanine are effective substitutes for glycine in the stimulation of HCN production. Glycine, threonine, and serine are good radioisotope precursors of HCN, but methionine and phenylalanine are not. Cell extracts of P. aeruginosa convert [14C]threonine to [14C]glycine. H14CN is produced with low dilution of label from either [1-14C]glycine or [2-14C]glycine, indicating a randomization of label either in the primary or secondary metabolism of glycine. When whole cells were fed [1,2-14C]glycine, cyanide and bicarbonate were the only radioactive extracellular products observed.  相似文献   

6.
Anaerobiosis of Pseudomonas aeruginosa in infected organs is now gaining attention as a unique physiological feature. After anaerobic cultivation of P. aeruginosa wild type strain PAO1 T, we noticed an unexpectedly expanding colony on a 1.5% agar medium. The basic factors involved in this spreading growth were investigated by growing the PAO1 T strain and its isogenic mutants on a Davis high-agar minimal synthetic medium under various experimental conditions. The most promotive environment for this spreading growth was an O(2)-depleted 8% CO(2) condition. From mutational analysis of this spreading growth, flagella and type IV pili were shown to be ancillary factors for this bacterial activity. On the other hand, a rhamnolipid-deficient rhlA mutant TR failed to exhibit spreading growth on a high-agar medium. Complementation of the gene defect of the mutant TR with a plasmid carrying the rhlAB operon resulted in the restoration of the spreading growth. In addition, an external supply of rhamnolipid or other surfactants (surfactin from Bacillus subtilis or artificial product Tween 80) also restored the spreading growth of the mutant TR. Such activity of surfactants on bacterial spreading on a hard-agar medium was unique to P. aeruginosa under CO(2)-rich anaerobic conditions.  相似文献   

7.
Hydrogen cyanide, a secondary metabolite of Pseudomonas aeruginosa.   总被引:3,自引:0,他引:3  
Seventy-four of 110 strains of Pseudomonas aeruginosa tested produced detectable amounts of HCN from growth in 2% peptone or nutrient agar. Of the 25 species of12 bacterial and fungal genera tested, other than P. aeruginosa, only P. fluorescens and P. polycolor gave positive HCN tests. Cyanide is produced after cessation of active growth. Iron was stimulatory to cyanogenesis in concentration above 1 muM, while copper, zinc, cobalt, and manganese at concentrations of 20 muM had no effect. Cyanogenesis id dependent on the temperature of incubation within ranges which allow complete growth. Inorganic phosphate in concentrations between 90 and 300 mM allows growth but inhibits HCN production. Growth of cells anaerobically, using nitrate as the electron acceptor, results in low cyanide yields, which can be partially reversed by subsequent aerobic incubation. These results indicate that HCN is a secondary metabolite of P. aeruginosa.  相似文献   

8.
In Pseudomonas aeruginosa, quorum sensing (QS) autoinducer known as acyl homoserine lactone (AHL) acts as a key regulator in the expression of pathogenic characters. In this work, the efficiency of phenylacetic acid (PAA) in reducing the production of AHL-dependent factors in P. aeruginosa PAO1 was studied. PAA at a concentration of 200?μg?ml(-1) displayed significant reduction in QS-dependent pyocyanin, exopolysaccharide, and protease and elastase production in PAO1. In swimming inhibition assay, PAA-treated PAO1 cells exhibited poor motility in swimming agar plate. In in vivo analysis, PAO1-preinfected Caenorhabditis elegans showed enhanced survival when treated with PAA. PAA at the QS inhibitory concentration showed no growth inhibitory activity on PAO1. Results of the present study revealed the potential of PAA as antipathogenic compound to prevent QS-dependent pathogenicity of P. aeruginosa.  相似文献   

9.
10.
An inhibitor was found in the culture fluid of Pseudomonas aeruginosa PAO1, which could inhibit the activity of the Pseudomonas autoinducer (PAI). The maximal inhibitory activity occurred in stationary phase culture sup ernatant. The PAI inhibitor did not influence the cell growth and the PAI production by P. aeruginosa PAO1 when the PAI inhibitor was added into culture medium. The induced expression of lacZ in the reporter strain Agrobacterium tumefaciens NT1 was suppressed by this PAI inhibitor, whereas inhibition could be relieved by increasing the auto inducer concentration. The quorum sensing of P. aeruginosa was inhibited presumably by inhibiting the inducing activity of Pseudomonas autoinducer but not by inhibiting the production of Pseudomonas autoinducer. It was demonstrated that the structure of the PAI inhibitor was different from that of acyl-homoserine lactones.  相似文献   

11.
12.
Pseudomonas aeruginosa is a leading cause of blinding corneal ulcers worldwide. To determine the role of type III secretion in the pathogenesis of P. aeruginosa keratitis, corneas of C57BL/6 mice were infected with P. aeruginosa strain PAO1 or PAK, which expresses ExoS, ExoT, and ExoY, but not ExoU. PAO1- and PAK-infected corneas developed severe disease with pronounced opacification and rapid bacterial growth. In contrast, corneas infected with ΔpscD or ΔpscJ mutants that cannot assemble a type III secretion system, or with mutants lacking the translocator proteins, do not develop clinical disease, and bacteria are rapidly killed by infiltrating neutrophils. Furthermore, survival of PAO1 and PAK strains in the cornea and development of corneal disease was impaired in ΔexoS, ΔexoT, and ΔexoST mutants of both strains, but not in a ΔexoY mutant. ΔexoST mutants were also rapidly killed in neutrophils in vitro and were impaired in their ability to promote neutrophil apoptosis in vivo compared with PAO1. Point mutations in the ADP ribosyltransferase (ADPR) regions of ExoS or ExoT also impaired proapoptotic activity in infected neutrophils, and exoST(ADPR-) mutants replicated the ΔexoST phenotype in vitro and in vivo, whereas mutations in rho-GTPase-activating protein showed the same phenotype as PAO1. Together, these findings demonstrate that the pathogenesis of P. aeruginosa keratitis in ExoS- and ExoT-producing strains is almost entirely due to their ADPR activities, which subvert the host response by targeting the antibacterial activity of infiltrating neutrophils.  相似文献   

13.
14.
15.
Bacteria form surface attached biofilm communities as one of the most important survival strategies in nature. Biofilms consist of water, bacterial cells and a wide range of self-generated extracellular polymeric substances (EPS). Biofilm formation is a dynamic self-assembly process and several distinguishable stages are observed during bacterial biofilm development. Biofilm formation is shown to be coordinated by EPS production, cell migration, subpopulation differentiation and interactions. However, the ways these different factors affect each other and contribute to community structural differentiation remain largely unknown. The distinct roles of different EPS have been addressed in the present report. Both Pel and Psl polysaccharides are required for type IV pilus-independent microcolony formation in the initial stages of biofilm formation by Pseudomonas aeruginosa PAO1. Both Pel and Psl polysaccharides are also essential for subpopulation interactions and macrocolony formation in the later stages of P. aeruginosa PAO1 biofilm formation. Pel and Psl polysaccharides have different impacts on Pseudomonas quinolone signal-mediated extracellular DNA release in P. aeruginosa PAO1 biofilms. Psl polysaccharide is more important than Pel polysaccharide in P. aeruginosa PAO1 biofilm formation and antibiotic resistance. Our study thus suggests that different EPS materials play distinct roles during bacterial biofilm formation.  相似文献   

16.
The properties of new virulent bacteriophage TL of Pseudomonas aeruginosa belonging to the family Podoviridae (genome size of 46 kb) were investigated. This bacteriophage is capable of lysogenizing the bacterial lawn in halo zones around negative colonies (NC) of other bacteriophages. TL forms large NC, that are hardly distinguishable on the lawn of P. aeruginisa PAO1. At the same time, on the lawns of some phage-resistant PAO1 mutants, as well as on those produced by a number of clinical isolates, TL forms more transparent NC. It is suggested that more effective growth of the bacteriophage TL NC is associated with the differences in outer lipopolysaccharide (LPS) layer of the cell walls of different bacterial strains, as well as of the bacteria inside and outside of the halos. This TL property was used to optimize selection of bacteriophages producing halos around NC on the lawn of P. aeruginosa PAO1. As a result, a group of bacteriophages differing in the patterns of interaction between their halos and TL bacteriophage, as well as in some characters was identified. Taking into consideration the importance of cell-surfaced structures of P. aeruginosa in manifestation of virulence and pathogenicity, possible utilization of specific phage enzymes, polysacchadide depolymerases, for more effective treatment of P. aeruginosa infections is discussed.  相似文献   

17.
The sigma factor RpoS (sigmaS) has been described as a general stress response regulator that controls the expression of genes which confer increased resistance to various stresses in some gram-negative bacteria. To elucidate the role of RpoS in Pseudomonas aeruginosa physiology and pathogenesis, we constructed rpoS mutants in several strains of P. aeruginosa, including PAO1. The PAO1 rpoS mutant was subjected to various environmental stresses, and we compared the resistance phenotype of the mutant to that of the parent. The PAO1 rpoS mutant was slightly more sensitive to carbon starvation than the wild-type strain, but this phenotype was obvious only when the cells were grown in a medium supplemented with glucose as the sole carbon source. In addition, the PAO1 rpoS mutant was hypersensitive to heat shock at 50 degrees C, increased osmolarity, and prolonged exposure to high concentrations of H2O2. In accordance with the hypersensitivity to H2O2, catalase production was 60% lower in the rpoS mutant than in the parent strain. We also assessed the role of RpoS in the production of several exoproducts known to be important for virulence of P. aeruginosa. The rpoS mutant produced 50% less exotoxin A, but it produced only slightly smaller amounts of elastase and LasA protease than the parent strain. The levels of phospholipase C and casein-degrading proteases were unaffected by a mutation in rpoS in PAO1. The rpoS mutation resulted in the increased production of the phenazine antibiotic pyocyanin and the siderophore pyoverdine. This increased pyocyanin production may be responsible for the enhanced virulence of the PAO1 rpoS mutant that was observed in a rat chronic-lung-infection model. In addition, the rpoS mutant displayed an altered twitching-motility phenotype, suggesting that the colonization factors, type IV fimbriae, were affected. Finally, in an alginate-overproducing cystic fibrosis (CF) isolate, FRD1, the rpoS101::aacCI mutation almost completely abolished the production of alginate when the bacterium was grown in a liquid medium. On a solid medium, the FRD1 rpoS mutant produced approximately 70% less alginate than did the wild-type strain. Thus, our data indicate that although some of the functions of RpoS in P. aeruginosa physiology are similar to RpoS functions in other gram-negative bacteria, it also has some functions unique to this bacterium.  相似文献   

18.
Aims:  To investigate whether the entomopathogenic bacterium Pseudomonas entomophila can synthesize hydrogen cyanide (HCN).
Methods and Results:  Cyanide production was assayed for during the growth of P. entomophila in liquid culture and during colonial growth. Pseudomonas entomophila produced HCN at a concentration of up to 40 μmol l−1 during growth in liquid cultures and its production was found to be affected by oxygen availability, with levels increasing as the oxygen-transfer coefficient decreased. Pseudomonas entomophila made HCN during colonial growth at levels greater (approximately threefold) than those made by the well studied cyanogenic bacterium Pseudomonas aeruginosa .
Conclusions:  This study demonstrated unequivocally that P. entomophila can synthesize HCN, placing it among the small number of cyanogenic bacteria. Our data indicate that HCN production in P. entomophila is regulated by oxygen availability.
Significance and Impact of the Study:  Pseudomonas entomophila was recently identified to be the only pseudomonad that naturally infects and induces lethality of Drosophila melanogaster . The virulence factors which contribute to entomopathogenicity exerted by this species are largely unknown. In this study, we demonstrate that P. entomophila produces HCN, a secondary metabolite implicated in biocontrol properties and pathogenicity exerted by other bacteria.  相似文献   

19.
20.
In addition to the two siderophores pyoverdine and pyochelin synthesized by Pseudomonas aeruginosa ATCC 15692 (strain PAO1), several siderophores produced by other bacteria or fungi, namely cepabactin, salicylic acid, desferriferrichrysin, desferriferricrocin, desferriferrioxamine B, desferriferrioxamine E and coprogen, were able to promote iron uptake with variable efficiencies into this bacterium. For most of these siderophores, these results were consistent with the growth stimulation produced by the same compounds in a plate bioassay. Desferriferrichrome A, enterobactin and desferriferrirubin, however, did not promote iron uptake, although enterobactin and desferriferrirubin stimulated bacterial growth. These paradoxical data are discussed in view of siderophore-inducible iron uptake systems, as demonstrated recently for enterobactin. Among the strains tested, including the wild-type PAO1, the pyoverdine-less mutant PAO6606 and the two porin-mutants P. aeruginosa H636 (oprF::omega) and P. aeruginosa H673 (oprD::Tn501), only for the porin-OprF mutant were fewer siderophores able to promote iron uptake compared to the other strains. Such results suggest that beside specific routes for iron uptake P. aeruginosa is also able to take up siderophore-liganded iron through OprF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号