首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During vertebrate development, oligodendrocytes wrap their plasma membrane around axons to produce myelin, a specialized membrane highly enriched in galactosylceramide (GalC) and cholesterol. Here, we studied the formation of myelin membrane sheets in a neuron-glia co-culture system. We applied different microscopy techniques to visualize lipid packing and dynamics in the oligodendroglial plasma membrane. We used the fluorescent dye Laurdan to examine the lipid order with two-photon microscopy and observed that neurons induce a dramatic lipid condensation of the oligodendroglial membrane. On a nanoscale resolution, using stimulated emission depletion and fluorescence resonance energy transfer microscopy, we demonstrated a neuronal-dependent clustering of GalC in oligodendrocytes. Most importantly these changes in lipid organization of the oligodendroglial plasma membrane were not observed in shiverer mice that do not express the myelin basic protein. Our data demonstrate that neurons induce the condensation of the myelin-forming bilayer in oligodendrocytes and that MBP is involved in this process of plasma membrane rearrangement. We propose that this mechanism is essential for myelin to perform its insulating function during nerve conduction.  相似文献   

2.
Myelin basic protein (MBP) is a major structural component of myelin. It is expressed exclusively in myelinating glia (oligodendrocytes in the CNS and Schwann cells in the PNS) and is localized to the cytoplasmic surface of the plasma membrane and myelin membrane produced by these cells. The work described here concerns the mechanism of plasma membrane localization of MBP in myelinating glial cells and whether it involves differentiated functions specific to these cells or general functions of plasma membrane assembly common to all cells. To this end, the subcellular localization of endogenous MBP in mouse oligodendrocytes was compared with that of transiently expressed MBP in monkey fibroblasts (Cos-1 cells) transfected with an MBP expression vector containing cDNA for rat 14K MBP. The steady-state levels of MBP-specific RNA and of MBP polypeptide expressed in the transfected fibroblasts were comparable to the levels expressed in oligodendrocytes in primary culture. MBP localization was analyzed in whole cells by immunofluorescence and in specific intracellular compartments by subcellular fractionation. The results show that MBP expressed in wild-type oligodendrocytes is localized to the plasma membrane. In contrast, MBP expressed in transfected fibroblasts appears dispersed in the cytoplasm and is distributed uniformly among the various subcellular fractions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Rapid conduction of nerve impulses requires coating of axons by myelin sheaths, which are multilamellar, lipid-rich membranes produced by oligodendrocytes in the central nervous system. To act as an insulator, myelin has to form a stable and firm membrane structure. In this study, we have analyzed the biophysical properties of myelin membranes prepared from wild-type mice and from mouse mutants that are unable to form stable myelin. Using C-Laurdan and fluorescence correlation spectroscopy, we find that lipids are tightly organized and highly ordered in myelin isolated from wild-type mice, but not from shiverer and ceramide synthase 2 null mice. Furthermore, only myelin lipids from wild-type mice laterally segregate into physically distinct lipid phases in giant unilamellar vesicles in a process that requires very long chain glycosphingolipids. Taken together, our findings suggest that oligodendrocytes exploit the potential of lipids to self-segregate to generate a highly ordered membrane for electrical insulation of axons.  相似文献   

4.
5.
Wrapping it up: the cell biology of myelination   总被引:5,自引:0,他引:5  
During nervous system development, oligodendroglia in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS) synthesise large amounts of specific proteins and lipids to generate myelin, a specialised membrane that spirally ensheathes axons and facilitates fast conduction of the action potential. Myelination is initiated after glial processes have attached to the axon and polarisation of the plasma membrane has been triggered. Myelin assembly is a multi-step process that occurs in spatially distinct regions of the cell. We propose that assembly of myelin proteins and lipids starts during their transport through the biosynthetic pathway and continues at the plasma membrane aided by myelin-basic protein (MBP). These sequential processes create the special lipid and protein composition necessary for myelin to perform its insulating function during nerve conduction.  相似文献   

6.
7.
Oligodendrocytes, the myelin-forming cells of the central nervous system, were cultured from newborn rat brain and optic nerve to allow us to analyze whether two transmembranous myelin proteins, myelin-associated glycoprotein (MAG) and proteolipid protein (PLP), were expressed together with myelin basic protein (MBP) in defined medium with low serum and in the absence of neurons. Using double label immunofluorescence, we investigated when and where these three myelin proteins appeared in cells expressing galactocerebroside (GC), a specific marker for the oligodendrocyte membrane. We found that a proportion of oligodendrocytes derived from brain and optic nerve invariably express MBP, MAG, and PLP about a week after the emergence of GC, which occurs around birth. In brain-derived oligodendrocytes, MBP and MAG first emerge between the fifth and the seventh day after birth, followed by PLP 1 to 2 d later. All three proteins were confined to the cell body at that time, although an extensive network of GC positive processes had already developed. Each protein shows a specific cytoplasmic localization: diffuse for MBP, mostly perinuclear for MAG, and particulate for PLP. Interestingly, MAG, which may be involved in glial-axon interactions, is the first myelin protein detected in the processes at approximately 10 d after birth. MBP and PLP are only seen in these locations after 15 d. All GC-positive cells express the three myelin proteins by day 19. Simultaneously, numerous membrane and myelin whorls accumulate along the oligodendrocyte surface. The sequential emergence, cytoplasmic location, and peak of expression of these three myelin proteins in vitro follow a pattern similar to that described in vivo and, therefore, are independent of continuous neuronal influences. Such cultures provide a convenient system to study factors regulating expression of myelin proteins.  相似文献   

8.
Myelin is a lipid-rich, spiraled membrane structure that allows for rapid propagation of action potentials through axons. In this issue, Aggarwal et?al. (2011) present evidence that myelin basic protein, essential for myelination by oligodendrocytes, regulates the biosynthesis of myelin membranes by restricting diffusion of membrane-bound proteins into compact myelin.  相似文献   

9.
During vertebrate brain development, axons are enwrapped by myelin, an insulating membrane produced by oligodendrocytes. Neuron-derived signaling molecules are temporally and spatially required to coordinate oligodendrocyte differentiation. In this study, we show that neurons regulate myelin membrane trafficking in oligodendrocytes. In the absence of neurons, the major myelin membrane protein, the proteolipid protein (PLP), is internalized and stored in late endosomes/lysosomes (LEs/Ls) by a cholesterol-dependent and clathrin-independent endocytosis pathway that requires actin and the RhoA guanosine triphosphatase. Upon maturation, the rate of endocytosis is reduced, and a cAMP-dependent neuronal signal triggers the transport of PLP from LEs/Ls to the plasma membrane. These findings reveal a fundamental and novel role of LEs/Ls in oligodendrocytes: to store and release PLP in a regulated fashion. The release of myelin membrane from LEs/Ls by neuronal signals may represent a mechanism to control myelin membrane growth.  相似文献   

10.
Central nervous system myelin is a dynamic entity arising from membrane processes extended from oligodendrocytes, which form a tightly-wrapped multilamellar structure around neurons. In mature myelin, the predominant splice isoform of classic MBP is 18.5 kDa. In solution, MBP is an extended, intrinsically disordered protein with a large effective protein surface for myriad interactions, and possesses transient and/or induced ordered secondary structure elements for molecular association or recognition. Here, we show by nanopore analysis that the divalent cations copper and zinc induce a compaction of the extended protein in vitro, suggestive of a tertiary conformation that may reflect its arrangement in myelin.  相似文献   

11.
12.
Myelin basic protein (MBP) and P2 protein are small positively charged proteins found in oligodendrocytes of rabbit spinal cord. Both proteins become incorporated into compact myelin. We have begun investigations into the mechanisms by which MBP and P2 become incorporated into the myelin membrane. We find that P2, like the MBPs, is synthesized on free polysomes in rabbit spinal cord. Cell fractionation experiments reveal that rabbit MBP mRNAs are preferentially segregated to the peripheral myelinating regions whereas P2 mRNAs are predominantly localized within the perikaryon of the cell. In vitro synthesized rabbit MBP readily associates with membranes added to translation mixtures, whereas P2 protein does not. It is possible that P2 requires a "receptor" molecule, perhaps a membrane-anchored protein, for association with the cytoplasmic face of the myelin membrane.  相似文献   

13.
The 18.5 kDa isoform of myelin basic protein (MBP) is a peripheral membrane protein that maintains the structural integrity of the myelin sheath of the central nervous system by conjoining the cytoplasmic leaflets of oligodendrocytes and by linking the myelin membrane to the underlying cytoskeleton whose assembly it strongly promotes. It is a multifunctional, intrinsically disordered protein that behaves primarily as a structural stabilizer, but with elements of a transient or induced secondary structure that represent binding sites for calmodulin or SH3-domain-containing proteins, inter alia. In this study we used solid-state NMR (SSNMR) and Fourier transform infrared (FTIR) spectroscopy to study the conformation of 18.5 kDa MBP in association with actin microfilaments and bundles. FTIR spectroscopy of fully 13C,15N-labeled MBP complexed with unlabeled F-actin showed induced folding of both protein partners, viz., some increase in β-sheet content in actin, and increases in both α-helix and β-sheet content in MBP, albeit with considerable extended structure remaining. Solid-state NMR spectroscopy revealed that MBP in MBP-actin assemblies is structurally heterogeneous but gains ordered secondary structure elements (both α-helical and β-sheet), particularly in the terminal fragments and in a central immunodominant epitope. The overall conformational polymorphism of MBP is consistent with its in vivo roles as both a linker (membranes and cytoskeleton) and a putative signaling hub.  相似文献   

14.
Myelin basic protein (MBP) is a multifunctional protein involved in maintaining the stability and integrity of the myelin sheath by a variety of interactions with membranes and other proteins. It assembles actin filaments and microtubules, can bind actin filaments and SH3-domains to a membrane surface, and may be able to tether them to the oligodendrocyte membrane and participate in signal transduction in oligodendrocytes/myelin. In the present study, we have shown that the 18.5 kDa MBP isoform can also bind microtubules to lipid vesicles in vitro. Phosphorylation of MBP at Thr94 and Thr97 (bovine sequence) by MAPK, and deimination of MBP (using a pseudo-deiminated recombinant form), had little detectable effect on its ability to polymerize and bundle microtubules, in contrast to the effect of these modifications on MBP-mediated assembly of actin. However, these modifications dramatically decreased the ability of MBP to tether microtubules to lipid vesicles. MBP and its phosphorylated and pseudo-deiminated variants were also able to bind microtubules to actin filaments. These results suggest that MBP may be able to tether microtubules to the cytoplasmic surface of the oligodendrocyte membrane, and that this binding can be regulated by post-translational modifications to MBP. We further show that MBP appears to be co-localized with actin filaments and microtubules in cultured oligodendrocytes, and also at the interface between actin filaments at the leading edge of membrane processes and microtubules behind them. Thus, MBP may also cross-link microtubules to actin filaments in vivo.  相似文献   

15.
The myelin basic proteins (MBPs) are a set of peripheral membrane polypeptides that are required for the compaction of the major dense line of central nervous system myelin. We have used primary cultures of oligodendrocytes from MBP-deficient shiverer mice as host cells for the expression by cDNA transfection of each of the four major MBP isoforms. The distributions of the encoded polypeptides were studied by immunofluorescence and confocal microscopy and compared with patterns of MBP expression in normal mouse oligodendrocytes in situ and in culture. The exon II-containing 21.5- or 17-kD MBPs were distributed diffusely in the cytoplasm and in the nucleus of the transfectants, closely resembling the patterns obtained in myelinating oligodendrocytes in 9-d-old normal mouse brains. By contrast, the distribution of the 14- and 18.5-kD MBPs in the transfectants was confined to the plasma membrane and mimicked the distribution of MBP in cultures of normal adult oligodendrocytes. Our results strongly suggest that the exon II-containing MBPs are expressed first and exclusively during oligodendrocyte maturation, where they may play a role in the early phase of implementation of the myelination program. In contrast, the 14- and 18.5-kD MBPs that possess strong affinity for the plasma membrane are likely to be the principle inducers of myelin compaction at the major dense line.  相似文献   

16.
The only known structural protein required for formation of myelin, produced by oligodendrocytes in the central nervous system, is myelin basic protein (MBP). This peripheral membrane protein has different developmentally-regulated isoforms, generated by alternative splicing. The isoforms are targeted to distinct subcellular locations, which is governed by the presence or absence of exon-II, although their functional expression is often less clear. Here, we investigated the role of exon-II-containing MBP isoforms and their link with cell proliferation. Live-cell imaging and FRAP analysis revealed a dynamic nucleocytoplasmic translocation of the exon-II-containing postnatal 21.5-kDa MBP isoform upon mitogenic modulation. Its nuclear export was blocked upon treatment with leptomycin B, an inhibitor of nuclear protein export. Next to the postnatal MBP isoforms, embryonic exon-II-containing MBP (e-MBP) is expressed in primary (immature) oligodendrocytes. The e-MBP isoform is exclusively present in OLN-93 cells, a rat-derived oligodendrocyte progenitor cell line, and interestingly, also in several non-CNS cell lines. As seen for postnatal MBPs, a similar nucleocytoplasmic translocation upon mitogenic modulation was observed for e-MBP. Thus, upon serum deprivation, e-MBP was excluded from the nucleus, whereas re-addition of serum re-established its nuclear localization, with a concomitant increase in proliferation. Knockdown of MBP by shRNA confirmed a role for e-MBP in OLN-93 proliferation, whereas the absence of e-MBP similarly reduced the proliferative capacity of non-CNS cell lines. Thus, exon-II-containing MBP isoforms may regulate cell proliferation via a mechanism that relies on their dynamic nuclear import and export, which is not restricted to the oligodendrocyte lineage.  相似文献   

17.
The 18.5-kDa classic myelin basic protein (MBP) is an intrinsically disordered protein arising from the Golli (Genes of Oligodendrocyte Lineage) gene complex and is responsible for compaction of the myelin sheath in the central nervous system. This MBP splice isoform also has a plethora of post-translational modifications including phosphorylation, deimination, methylation, and deamidation, that reduce its overall net charge and alter its protein and lipid associations within oligodendrocytes (OLGs). It was originally thought that MBP was simply a structural component of myelin; however, additional investigations have demonstrated that MBP is multi-functional, having numerous protein-protein interactions with Ca2+-calmodulin, actin, tubulin, and proteins with SH3-domains, and it can tether these proteins to a lipid membrane in vitro. Here, we have examined cytoskeletal interactions of classic 18.5-kDa MBP, in vivo, using early developmental N19-OLGs transfected with fluorescently-tagged MBP, actin, tubulin, and zonula occludens 1 (ZO-1). We show that MBP redistributes to distinct ‘membrane-ruffled’ regions of the plasma membrane where it co-localizes with actin and tubulin, and with the SH3-domain-containing proteins cortactin and ZO-1, when stimulated with PMA, a potent activator of the protein kinase C pathway. Moreover, using phospho-specific antibody staining, we show an increase in phosphorylated Thr98 MBP (human sequence numbering) in membrane-ruffled OLGs. Previously, Thr98 phosphorylation of MBP has been shown to affect its conformation, interactions with other proteins, and tethering of other proteins to the membrane in vitro. Here, MBP and actin were also co-localized in new focal adhesion contacts induced by IGF-1 stimulation in cells grown on laminin-2. This study supports a role for classic MBP isoforms in cytoskeletal and other protein-protein interactions during membrane and cytoskeletal remodeling in OLGs.  相似文献   

18.
Central nervous system myelination requires the synthesis of large amounts of myelin basic protein (MBP) at the axon-glia contact site. MBP messenger RNA (mRNA) is transported in RNA granules to oligodendroglial processes in a translationally silenced state. This process is regulated by the trans-acting factor heterogeneous nuclear ribonucleoprotein (hnRNP) A2 binding to the cis-acting A2 response element (A2RE). Release of this repression of MBP mRNA translation is thus essential for myelination. Mice deficient in the Src family tyrosine kinase Fyn are hypomyelinated and contain reduced levels of MBP. Here, we identify hnRNP A2 as a target of activated Fyn in oligodendrocytes. We show that active Fyn phosphorylates hnRNP A2 and stimulates translation of an MBP A2RE-containing reporter construct. Neuronal adhesion molecule L1 binding to oligodendrocytes results in Fyn activation, which leads to an increase in hnRNP A2 phosphorylation. These results suggest that Fyn kinase activation results in the localized translation of MBP mRNA at sites of axon-glia contact and myelin deposition.  相似文献   

19.
《The Journal of cell biology》1986,103(6):2673-2682
During the active phase of myelination in myelin-deficient mutant mice (mld), myelin basic protein (MBP) synthesis is defective and the myelin lamellae are uncompacted. In these mutants, we found a fast metabolism of the myelin-associated glycoprotein (MAG) and of sulfatides, and the presence of cholesterol esters and a degradation product of MAG, dMAG, indicating that mld myelin was unstable. The increased synthesis of MAG and Wolfgram protein, two proteins present in uncompacted myelin sheath and paranodal loops, was demonstrated by high levels of messengers. Simultaneously, we found an accumulation of inclusion bodies, vacuoles, and rough endoplasmic reticulum in mld oligodendrocytes. This material was heavily immunostained for MAG. Furthermore, the developmental change between the two molecular forms of MAG (p72MAG/p67MAG) was delayed in mld mice. In 85-d-old mld mice, the MBP content increased and myelin lamellae became better compacted. In these mutants, dMAG was absent and MAG mRNAs were found in normal amounts. Furthermore, the fine structure of mld oligodendrocytes was normal and the MAG immunostaining was similar to age-matched controls. These results support a functional role for MBP in maintaining the metabolic stability and the compact structure of myelin. Furthermore, in the absence of MBP and myelin compaction, the regulation of the synthesis of at least two membrane proteins related to myelin cannot proceed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号