首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The acute phase response is characterized by elevations in serum triglyceride levels due to both an increase in hepatic VLDL production and a delay in the clearance of triglyceride rich lipoproteins secondary to a decrease in lipoprotein lipase (LPL) activity. Recently there has been a marked increase in our understanding of factors that regulate LPL activity. GPIHBP1 facilitates the interaction of LPL and lipoproteins thereby allowing lipolysis to occur. Angiopoietin like proteins (ANGPTL) 3 and 4 inhibit LPL activity. In the present study, treatment of mice with LPS, an activator of TLR4 and a model of Gram-negative infections, did not alter the expression of GPIHBP1 in heart or adipose tissue. However, LPS decreased the expression of ANGPTL3 in liver and increased the expression of ANGPTL4 in heart, muscle, and adipose tissue. Serum ANGPTL4 protein levels were markedly increased at 8 and 16 h following LPS treatment. Administration of zymosan, an activator of TLR2 and a model of fungal infections, also increased serum ANGPTL4 protein and mRNA levels in liver, heart, muscle, and adipose tissue. Finally, treatment of 3T3-L1 adipocytes with LPS or cytokines (TNF alpha, IL-1 beta, and interferon gamma) stimulated ANGPTL4 expression. These studies demonstrate that ANGPTL4 is a positive acute phase protein and the increase in ANGPTL4 could contribute to the hypertriglyceridemia that characteristically occurs during the acute phase response by inhibiting LPL activity.  相似文献   

2.
Arachidonic acid (AA) plays a fundamental role in the function of all cells. Metabolites of AA contribute to inflammation as well as for resolving inflammation. Although AA-derived metabolites exhibit well-substantiated bioactivity, it is not known whether AA regulates inflammatory responses independent of its metabolites. With the recent discovery that saturated fatty acids activate toll-like receptor-4 (TLR4), we tested the hypothesis that AA directly regulates inflammatory responses through modulating the activity of TLR4. In cultured cardiomyocytes and macrophages, we found that AA prevents saturated fatty acid-induced TLR4 complex formation with accessory proteins and the induction of proinflammatory cytokines. We discovered that AA directly binds to TLR4 co-receptor, myeloid differentiation factor 2 (MD2) and prevents saturated fatty acids from activating TLR4 pro-inflammatory signaling pathway. Similarly, AA reduced lipopolysaccharide (LPS)-induced inflammation in macrophages and septic death in mice through binding to MD2. In high-fat diet mouse model of obesity and LPS-induced model of acute lung injury, both mediating inflammatory responses through TLR4, treatment with AA prevented MD2/TLR4 dimerization, induction of inflammatory factors, and tissue injuries. In summary, we have discovered that AA interacts with MD2 and disrupts TLR4 activation by LPS and saturated fatty acids. These findings provide experimental evidence for a direct mechanism of AA-induced regulation of inflammation.  相似文献   

3.
Free fatty acid receptor G protein‐coupled receptor 120 (GPR120) is highly expressed in macrophages and was reported to inhibit lipopolysaccharide (LPS)‐stimulated cytokine expression. Under inflammation, macrophages exhibit striking functional changes, but changes in GPR120 expression and signaling are not known. In this study, the effects of LPS treatment on macrophage GPR120 expression and activation were investigated. The results showed that LPS inhibited GPR120 expression in mouse macrophage cell line Ana‐1 cells. Moreover, LPS treatment inhibited GPR120 expression in mouse alveolar macrophages both in vitro and in vivo. The inhibitory effect of LPS on GPR120 expression was blocked by Toll‐like receptor 4 (TLR4) inhibitor TAK242 and p38 mitogen‐activated protein kinase inhibitor LY222820, but not by ERK1/2 inhibitor U0126 and c‐Jun N‐terminal kinase inhibitor SP600125. LPS‐induced inhibition of GPR120 expression was not attenuated by GPR120 agonists TUG891 and GW9508. TUG891 inhibited the phagocytosis of alveolar macrophages, and LPS treatment counteracted the effects of TUG891 on phagocytosis. These results indicate that pretreatment with LPS inhibits GPR120 expression and activation in macrophages. It is suggested that LPS‐induced inhibition of GPR120 expression is a reaction enhancing the LPS‐induced pro‐inflammatory response of macrophages.  相似文献   

4.
Toll-like receptors (TLRs) are a family of mammalian homologues of Drosophila Toll and play important roles in host defense. Two of the TLRs, TLR2 and TLR4, mediate the responsiveness to LPS. Here the gene expression of TLR2 and TLR4 was analyzed in mouse macrophages. Mouse splenic macrophages responded to an intraperitoneal injection or in vitro treatment of LPS by increased gene expression of TLR2, but not TLR4. Treatment of a mouse macrophage cell line with LPS, synthetic lipid A, IL-2, IL-15, IL-1beta, IFN-gamma, or TNF-alpha significantly increased TLR2 mRNA expression, whereas TLR4 mRNA expression remained constant. TLR2 mRNA increase in response to synthetic lipid A was severely impaired in splenic macrophages isolated from TLR4-mutated C3H/HeJ mice, suggesting that TLR4 plays an essential role in the process. Specific inhibitors of mitogen-activated protein/extracellular signal-regulated kinase kinase and p38 kinase did not significantly inhibit TLR2 mRNA up-regulation by LPS. In contrast, LPS-mediated TLR2 mRNA induction was abrogated by pretreatment with a high concentration of curcumin, suggesting that NF-kappaB activation may be essential for the process. Taken together, our results indicate that TLR2, in contrast to TLR4, can be induced in macrophages in response to bacterial infections and may accelerate the innate immunity against pathogens.  相似文献   

5.
Toll-like receptor 4 (TLR4) and TLR2 agonists from bacterial origin require acylated saturated fatty acids in their molecules. Previously, we reported that TLR4 activation is reciprocally modulated by saturated and polyunsaturated fatty acids in macrophages. However, it is not known whether fatty acids can modulate the activation of TLR2 or other TLRs for which respective ligands do not require acylated fatty acids. A saturated fatty acid, lauric acid, induced NFkappaB activation when TLR2 was co-transfected with TLR1 or TLR6 in 293T cells, but not when TLR1, 2, 3, 5, 6, or 9 was transfected individually. An n-3 polyunsaturated fatty acid (docosahexaenoic acid (DHA)) suppressed NFkappaB activation and cyclooxygenase-2 expression induced by the agonist for TLR2, 3, 4, 5, or 9 in a macrophage cell line (RAW264.7). Because dimerization is considered one of the potential mechanisms for the activation of TLR2 and TLR4, we determined whether the fatty acids modulate the dimerization. However, neither lauric acid nor DHA affected the heterodimerization of TLR2 with TLR6 as well as the homodimerization of TLR4 as determined by co-immunoprecipitation assays in 293T cells in which these TLRs were transiently overexpressed. Together, these results demonstrate that lauric acid activates TLR2 dimers as well as TLR4 for which respective bacterial agonists require acylated fatty acids, whereas DHA inhibits the activation of all TLRs tested. Thus, responsiveness of different cell types and tissues to saturated fatty acids would depend on the expression of TLR4 or TLR2 with either TLR1 or TLR6. These results also suggest that inflammatory responses induced by the activation of TLRs can be differentially modulated by types of dietary fatty acids.  相似文献   

6.
Lipoprotein lipase (LPL) hydrolyzes triglycerides in plasma lipoproteins causing release of fatty acids for metabolic purposes in muscles and adipose tissue. LPL in macrophages in the artery wall may, however, promote foam cell formation and atherosclerosis. Angiopoietin-like protein (ANGPTL) 4 inactivates LPL and ANGPTL4 expression is controlled by peroxisome proliferator-activated receptors (PPAR). The mechanisms for inactivation of LPL by ANGPTL4 was studied in THP-1 macrophages where active LPL is associated with cell surfaces in a heparin-releasable form, while LPL in the culture medium is mostly inactive. The PPARδ agonist GW501516 had no effect on LPL mRNA, but increased ANGPTL4 mRNA and caused a marked reduction of the heparin-releasable LPL activity concomitantly with accumulation of inactive, monomeric LPL in the medium. Intracellular ANGPTL4 was monomeric, while dimers and tetramers of ANGPTL4 were present in the heparin-releasable fraction and medium. GW501516 caused an increase in the amount of ANGPTL4 oligomers on the cell surface that paralleled the decrease in LPL activity. Actinomycin D blocked the effects of GW501516 on ANGPTL4 oligomer formation and prevented the inactivation of LPL. Antibodies against ANGPTL4 interfered with the inactivation of LPL. We conclude that inactivation of LPL in THP-1 macrophages primarily occurs on the cell surface where oligomers of ANGPTL4 are formed.  相似文献   

7.
8.
Results from our previous studies demonstrated that activation of Toll-like receptor 4 (Tlr4), the lipopolysaccharide (LPS) receptor, is sufficient to induce nuclear factor kappaB activation and expression of inducible cyclooxygenase (COX-2) in macrophages. Saturated fatty acids (SFAs) acylated in lipid A moiety of LPS are essential for biological activities of LPS. Thus, we determined whether these fatty acids modulate LPS-induced signaling pathways and COX-2 expression in monocyte/macrophage cells (RAW 264.7). Results show that SFAs, but not unsaturated fatty acids (UFAs), induce nuclear factor kappaB activation and expression of COX-2 and other inflammatory markers. This induction is inhibited by a dominant-negative Tlr4. UFAs inhibit COX-2 expression induced by SFAs, constitutively active Tlr4, or LPS. However, UFAs fail to inhibit COX-2 expression induced by activation of signaling components downstream of Tlr4. Together, these results suggest that both SFA-induced COX-2 expression and its inhibition by UFAs are mediated through a common signaling pathway derived from Tlr4. These results represent a novel mechanism by which fatty acids modulate signaling pathways and target gene expression. Furthermore, these results suggest a possibility that propensity of monocyte/macrophage activation is modulated through Tlr4 by different types of free fatty acids, which in turn can be altered by kinds of dietary fat consumed.  相似文献   

9.
Lactoferrin (LF) is a component of innate immunity and is known to interact with accessory molecules involved in the TLR4 pathway, including CD14 and LPS binding protein, suggesting that LF may activate components of the TLR4 pathway. In the present study, we have asked whether bovine LF (bLF)-induced macrophage activation is TLR4-dependent. Both bLF and LPS stimulated IL-6 production and CD40 expression in RAW 264.7 macrophages and in BALB/cJ peritoneal exudate macrophages. However, in macrophages from congenic TLR4(-/-) C.C3-Tlr4(lps-d) mice, CD40 was not expressed while IL-6 secretion was increased relative to wild-type cells. The signaling components NF-kappaB, p38, ERK and JNK were activated in RAW 264.7 cells and BALB/cJ macrophages after bLF or LPS stimulation, demonstrating that the TLR4-dependent bLF activation pathway utilizes signaling components common to LPS activation. In TLR4 deficient macrophages, bLF-induced activation of NF-kappaB, p38, ERK and JNK whereas LPS-induced cell signaling was absent. We conclude from these studies that bLF induces limited and defined macrophage activation and cell signaling events via TLR4-dependent and -independent mechanisms. bLF-induced CD40 expression was TLR4-dependent whereas bLF-induced IL-6 secretion was TLR4-independent, indicating potentially separate pathways for bLF mediated macrophage activation events in innate immunity.  相似文献   

10.
TLRs provide critical signals to induce innate immune responses in APCs such as dendritic cells (DCs) that in turn link to adaptive immune responses. Results from our previous studies demonstrated that saturated fatty acids activate TLRs, whereas n-3 polyunsaturated fatty acids inhibit agonist-induced TLR activation. These results raise a significant question as to whether fatty acids differentially modulate immune responses mediated through TLR activation. The results presented in this study demonstrate that the saturated fatty acid, lauric acid, up-regulates the expression of costimulatory molecules (CD40, CD80, and CD86), MHC class II, and cytokines (IL-12p70 and IL-6) in bone marrow-derived DCs. The dominant negative mutant of TLR4 or its downstream signaling components inhibits lauric acid-induced expression of a CD86 promoter-reporter gene. In contrast, an n-3 polyunsaturated fatty acid, docosahexaenoic acid, inhibits TLR4 agonist (LPS)-induced up-regulation of the costimulatory molecules, MHC class II, and cytokine production. Similarly, DCs treated with lauric acid show increased T cell activation capacity, whereas docosahexaenoic acid inhibits T cell activation induced by LPS-treated DCs. Together, our results demonstrate that the reciprocal modulation of both innate and adaptive immune responses by saturated fatty acid and n-3 polyunsaturated fatty acid is mediated at least in part through TLRs. These results imply that TLRs are involved in sterile inflammation and immune responses induced by nonmicrobial endogenous molecules. These results shed new light in understanding how types of dietary fatty acids differentially modulate immune responses that could alter the risk of many chronic diseases.  相似文献   

11.
12.
13.
Macrophages play a key role in host defense and in tissue repair after injury. Emerging evidence suggests that macrophage dysfunction in states of lipid excess can contribute to the development of insulin resistance and may underlie inflammatory complications of diabetes. Ceramides are sphingolipids that modulate a variety of cellular responses including cell death, autophagy, insulin signaling, and inflammation. In this study we investigated the intersection between TLR4-mediated inflammatory signaling and saturated fatty acids with regard to ceramide generation. Primary macrophages treated with lipopolysaccharide (LPS) did not produce C16 ceramide, whereas palmitate exposure led to a modest increase in this sphingolipid. Strikingly, the combination of LPS and palmitate led to a synergistic increase in C16 ceramide. This response occurred via cross-talk at the level of de novo ceramide synthesis in the ER. The synergistic response required TLR4 signaling via MyD88 and TIR-domain-containing adaptor-inducing interferon beta (TRIF), whereas palmitate-induced ceramide production occurred independent of these inflammatory molecules. This ceramide response augmented IL-1β and TNFα release, a process that may contribute to the enhanced inflammatory response in metabolic diseases characterized by dyslipidemia.  相似文献   

14.
Nucleotide-binding oligomerization domain-containing proteins (Nods) are intracellular pattern recognition receptors recognizing conserved moieties of bacterial peptidoglycan through their leucine-rich repeats domain. The agonists for Nods activate proinflammatory signaling pathways, including NF-kappaB pathways. The results from our previous studies showed that the activation of TLR4 and TLR2, leucine-rich repeat-containing pattern recognition receptors, were differentially modulated by saturated and n-3 polyunsaturated fatty acids in macrophages and dendritic cells. Here, we show the differential modulation of NF-kappaB activation and interleukin-8 (IL-8) expression in colonic epithelial cells HCT116 by saturated and unsaturated fatty acids mediated through Nods proteins. Lauric acid (C12:0) dose dependently activated NF-kappaB and induced IL-8 expression in HCT116 cells, which express both Nod1 and Nod2, but not detectable amounts of TLR2 and TLR4. These effects of lauric acid were inhibited by dominant negative forms of Nod1 or Nod2, but not by dominant negative forms of TLR2, TLR4, and TLR5. The effects of lauric acid were also attenuated by small RNA interference targeting Nod1 or Nod2. In contrast, polyunsaturated fatty acids, especially n-3 polyunsaturated fatty acids, inhibited the activation of NF-kappaB and IL-8 expression induced by lauric acid or known Nods ligands in HCT116. Furthermore, lauric acid induced, but docosahexaenoic acid inhibited lauric acid- or Nod2 ligand MDP-induced, Nod2 oligomerization in HEK293T cells transfected with Nod2. Together, these results provide new insights into the role of dietary fatty acids in modulating inflammation in colon epithelial cells. The results suggest that Nods may be involved in inducing sterile inflammation, one of the key etiological conditions in the development of many chronic inflammatory diseases.  相似文献   

15.
AimAlthough unsaturated fatty acids are assumed to be protective against inflammatory disorders that include a pathway involving Toll-like receptor 4 (TLR4) activation, they might actually be toxic because of their high susceptibility to lipid peroxidation. Here we studied the effects of peroxidized unsaturated fatty acids on the TLR4–nuclear factor (NF)-κB pathway in endothelial cells.Main methodsConfluent cultured endothelial cells from bovine aorta were incubated for 1 h with fatty acids integrated into phosphatidylcholine vesicles. Lipopolysaccharide (LPS) or phosphatidylcholine vesicles without fatty acids were also applied as a positive control or a control for fatty acid groups, respectively. Activation of TLR4 and downstream signaling was assessed by membrane fractionation and Western blotting or immunofluorescent staining.Key findingsIn the same way as LPS, application of sufficiently peroxidized unsaturated fatty acids like oleic acid or docosahexaenoic acid, acutely caused TLR4 translocation to caveolae/raft membranes, leading to activation of NF-κB signaling in endothelial cells. In contrast, saturated fatty acids did not show such effects. Applying well-peroxidized unsaturated fatty acids, but not saturated fatty acids, acutely activates the TLR4/NF-κB pathway.SignificancePeroxidation of unsaturated fatty acid is essential for the acute activation of TLR4 by the fatty acids that follow the same pathway as the activation by LPS. Unsaturated fatty acids have been assumed to be protective against inflammatory disorders, and drugs containing unsaturated fatty acids are now developed and provided. Our result suggests that, for inflammatory disorders involving TLR4 signaling, using unsaturated fatty acids as anti-inflammatory drugs may cause contrary effects.  相似文献   

16.
17.
Uncontrolled TLR4 signaling may induce excessive production of proinflammatory cytokines and lead to harmful inflammation; therefore, negative regulation of TLR4 signaling attracts much attention now. PECAM-1, a member of Ig-ITIM family, can mediate inhibitory signals in T cells and B cells. However, the role and the mechanisms of PECAM-1 in the regulation of TLR4-mediated LPS response in macrophages remain unclear. In this study, we demonstrate that PECAM-1 ligation with CD38-Fc fusion protein negatively regulates LPS-induced proinflammatory cytokine TNF-alpha, IL-6, and IFN-beta production by inhibiting JNK, NF-kappaB, and IFN regulatory factor 3 activation in macrophages. In addition, PECAM-1 ligation-recruited Src homology region 2 domain-containing phosphatase 1 (SHP-1) and Src homology region 2 domain-containing phosphatase 2 (SHP-2) may be involved in the inhibitory effect of PECAM-1 on TLR4 signaling. Consistently, silencing of PECAM-1 enhances the macrophage response to LPS stimulation. Taken together with the data that PECAM-1 is constitutively expressed in macrophages and its expression is up-regulated by LPS stimulation, PECAM-1 might function as a feedback negative regulator of LPS inflammatory response in macrophages. This study may provide a potential target for intervention of inflammatory diseases.  相似文献   

18.
RP105 is a member of the toll-like receptor family of proteins that transmits an activation signal in B cells, playing a role in regulation of B cell growth and death; in macrophages and dendritic cells, RP105 is a specific inhibitor of TLR4 signaling. RP105 is uniquely important for regulating TLR4-dependent signaling. It also proved that RP105 is closely related to TLR2 in macrophage activation by Mycobacterium tuberculosis lipoproteins. The aim of our study is to investigate the role of RP105 in mouse macrophages activation of TLR4 and TLR2 signaling by lipopolysaccharides (LPS) and Pam3CysSerLys4 (Pam3CSK4) alone or in combination, and the interaction between TLR2 and TLR4 signaling through RP105. Our results indicate that besides exhibiting negative regulation of TNF-α and IL12-p40 secretion in macrophage activated by LPS, RP105 is also involved in macrophages activation by Pam3CSK4 through TLR2 signaling and exhibited regulation to IL-10 and RANTES production by mouse peritoneal macrophage activated by Pam3CSK4. In macrophages activation by LPS and Pam3CSK4 in combination, TLR2 signaling can overcome RP105-mediated regulation of TLR4 signaling. Thus, our data demonstrate that not only TLR4 signaling, but also RP105 appears to be an essential accessory for immune responses through TLR2 signaling. The function of TLR2 and TLR4 in response to TLR ligands could be associated with each other by RP105. These results can help us understanding the unique role of RP105 in macrophages response to TLR ligands.  相似文献   

19.
20.
Bronchopulmonary dysplasia is a common pulmonary complication of extreme prematurity. Arrested lung development leads to bronchopulmonary dysplasia, but the molecular pathways that cause this arrest are unclear. Lung injury and inflammation increase disease risk, but the cellular site of the inflammatory response and the potential role of localized inflammatory signaling in inhibiting lung morphogenesis are not known. In this study, we show that tissue macrophages present in the fetal mouse lung mediate the inflammatory response to LPS and that macrophage activation inhibits airway morphogenesis. Macrophage depletion or targeted inactivation of the NF-κB signaling pathway protected airway branching in cultured lung explants from the effects of LPS. Macrophages also appear to be the primary cellular site of IL-1β production following LPS exposure. Conversely, targeted NF-κB activation in transgenic macrophages was sufficient to inhibit airway morphogenesis. Macrophage activation in vivo inhibited expression of multiple genes critical for normal lung development, leading to thickened lung interstitium, reduced airway branching, and perinatal death. We propose that fetal lung macrophage activation contributes to bronchopulmonary dysplasia by generating a localized inflammatory response that disrupts developmental signals critical for lung formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号