首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The accumulated ultrastructural and biochemical evidence is highly suggestive of the existence of mitochondrial nitric oxide (NO) synthase (mtNOS), where local production of NO regulates the electron transport along the respiratory chain. Here, the functional competence of mtNOS in situ in a living cell was examined using an intravital fluorescent NO indicator, 4,5-diaminofluorescein, employing a new procedure for loading it into the mitochondria to demonstrate local NO generation in undisrupted endothelial cells and in isolated mitochondria as well as in human embryonic kidney cells stably expressing endothelial NOS. With the use of this approach, we showed that endothelial cells incubated in the presence of high concentration of D-glucose (but not L-glucose) are characterized by the reduced NO synthetic function of mitochondria despite the unaltered abundance of the enzyme. In parallel, mitochondrial generation of superoxide was augmented in endothelial cells incubated in the presence of a high concentration of D-glucose. Both the NO generation and superoxide production in hyperglycemic environment could be restored to control levels by treating cells with a cell-permeable superoxide dismutase mimetic. In addition, enhanced mitochondrial superoxide production could be suppressed with an inhibitor of NOS in stimulated endothelial cells. In conclusion, the data 1) provide direct evidence of mitochondrial NO production in endothelial cells, 2) demonstrate its suppression and enhanced superoxide generation in hyperglycemic environment, and 3) provide evidence that "uncoupled" mtNOS represents an important source of superoxide anions in endothelial cells incubated in high glucose-containing medium.  相似文献   

2.
Nitric oxide can inhibit mitochondrial cytochrome oxidase in both oxygen competitive and uncompetitive modes. A previous model described these interactions assuming equilibrium binding to the reduced and oxidised enzyme respectively (Mason, et al. Proc. Natl. Acad. Sci. U S A 103 (2006) 708-713). Here we demonstrate that the equilibrium assumption is inappropriate as it requires unfeasibly high association constants for NO to the oxidised enzyme. Instead we develop a model which explicitly includes NO binding and its enzyme-bound conversion to nitrite. Removal of the nitrite complex requires electron transfer to the binuclear centre from haem a. This revised model fits the inhibition constants at any value of substrate concentration (ferrocytochrome c or oxygen). It predicts that the inhibited steady state should be a mixture of the reduced haem nitrosyl complex and the oxidized-nitrite complex. Unlike the previous model, binding to the oxidase is always proportional to the degree of inhibition of oxygen consumption. The model is consistent with data and models from a recent paper suggesting that the primary effect of NO binding to the oxidised enzyme is to convert NO to nitrite, rather than to inhibit enzyme activity (Antunes et al. Antioxid. Redox Signal. 9 (2007) 1569-1579).  相似文献   

3.
Nitric oxide (NO) and its derivatives inhibit mitochondrial respiration by a variety of means. Nanomolar concentrations of NO immediately, specifically and reversibly inhibit cytochrome oxidase in competition with oxygen, in isolated cytochrome oxidase, mitochondria, nerve terminals, cultured cells and tissues. Higher concentrations of NO and its derivatives (peroxynitrite, nitrogen dioxide or nitrosothiols) can cause irreversible inhibition of the respiratory chain, uncoupling, permeability transition, and/or cell death. Isolated mitochondria, cultured cells, isolated tissues and animals in vivo display respiratory inhibition by endogenously produced NO from constitutive isoforms of NO synthase (NOS), which may be largely mediated by NO inhibition of cytochrome oxidase. Cultured cells expressing the inducible isoform of NOS (iNOS) can acutely and reversibly inhibit their own cellular respiration and that of co-incubated cells due to NO inhibition of cytochrome oxidase, but after longer-term incubation result in irreversible inhibition of cellular respiration due to NO or its derivatives. Thus the NO inhibition of cytochrome oxidase may be involved in the physiological and/or pathological regulation of respiration rate, and its affinity for oxygen.  相似文献   

4.
Peroxynitrite (ONOO(-)) is a potent nitrating and oxidizing agent that is formed by a rapid reaction of nitric oxide (NO) with superoxide anion (O(2)). It appears to be involved in the pathophysiology of many inflammatory and neurodegenerative diseases. It has recently been reported (Pfeiffer, S., and Mayer, B. (1998) J. Biol. Chem. 273, 27280-27285) that ONOO(-) generated at neutral pH from NO and O(2) (NO/O(2)) was substantially less efficient than preformed ONOO(-) at nitrating tyrosine. Here we re-evaluated tyrosine nitration by NO/O(2) with a shorter incubation period and a more sensitive electrochemical detection system. Appreciable amounts of nitrotyrosine were produced by ONOO(-) formed in situ (2.9 micrometer for 5 min; 10 nm/s) by NO/O(2) flux obtained from propylamine NONOate (CH(3)N[N(O)NO](-) (CH(2))(3)NH(2)(+)CH(3)) and xanthine oxidase using pterin as a substrate in phosphate buffer (pH 7.0) containing 0.1 mm l-tyrosine. The yield of nitrotyrosine by this NO/O(2) flux was approximately 70% of that produced by the same flux of preformed ONOO(-) (2.9 micrometer/5 min). When hypoxanthine was used as a substrate, tyrosine nitration by NO/O(2) was largely eliminated because of the inhibitory effect of uric acid produced during the oxidation of hypoxanthine. Tyrosine nitration caused by NO/O(2) was inhibited by the ONOO(-) scavenger ebselen and was enhanced 2-fold by NaHCO(3), as would be expected, because CO(2) promotes tyrosine nitration. The profile of nitrotyrosine and dityrosine formation produced by NO/O(2) flux (2.9 micrometer/5 min) was consistent with that produced by preformed ONOO(-). Tyrosine nitration predominated compared with dityrosine formation caused by a low nanomolar flux of ONOO(-) at physiological concentrations of free tyrosine (<0.5 mm). In conclusion, our results show that NO generated with O(2) nitrates tyrosine with a reactivity and efficacy similar to those of chemically synthesized ONOO(-), indicating that ONOO(-) can be a significant source of tyrosine nitration in physiological and pathological events in vivo.  相似文献   

5.
The mitochondrial electron transfer chain present in the procyclic form of the African trypanosome Trypanosoma brucei contains both cytochrome c oxidase and an alternative oxidase (TAO) as terminal oxidases that reduce oxygen to water. By contrast, the electron transfer chain of the primitive mitochondrion present in the bloodstream form of T. brucei contains only TAO as the terminal oxidase. TAO functions in the bloodstream forms to oxidize the ubiquinol produced by the glycerol-3-phosphate shuttle that results in the oxidation of the reduced nicotinamide adenine dinucleotide phosphate produced by glycolysis. The function, however, of TAO in the procyclic forms is unknown. In this study, we found that inhibition of TAO by the specific inhibitor salicylhydroxamic acid stimulates the formation of reactive oxygen species (ROS) in trypanosome mitochondria, resulting in mitochondrial alteration and increased oxidation of cellular proteins. Moreover, the activity and protein content of TAO in procyclic trypanosomes were increased when cells were incubated in the presence of hydrogen peroxide or antimycin A, the cytochrome bc1 complex inhibitor, which also results in increased ROS production. We suggest that one function of TAO in procyclic cells may be to prevent ROS production by removing excess reducing equivalents and transferring them to oxygen.  相似文献   

6.
A protein inhibitor of neuronal nitric oxide synthase (nNOS) was identified and designated as PIN. PIN was reported to inhibit nNOS activity in cell lysates through disruption of enzyme dimerization. However, there has been lack of direct characterization of the effect of PIN on NO production from purified nNOS. Furthermore, nNOS also generates superoxide (.O(2)(-)) at low levels of L-arginine. It is unknown whether PIN affects .O(2)(-) generation from nNOS. Therefore, we performed direct measurements of the effects of PIN on NO and .O(2)(-) generation from purified nNOS using electron paramagnetic resonance spin trapping techniques. nNOS was isolated by affinity chromatography and a fusion protein CBP-PIN was used to probe the effect of PIN. While the tag CBP did not affect nNOS activity, CBP-PIN caused a dose-dependent inhibition on both NO and L-citrulline production. In the absence of L-arginine, strong .O(2)(-) generation was observed from nNOS, and this was blocked by CBP-PIN in a dose-dependent manner. With low-temperature polyacrylamide gel electrophoresis, neither CBP nor CBP-PIN was found to affect nNOS dimerization. Thus, these results suggested that PIN not only inhibits NO but also .O(2)(-) production from nNOS, and this is through a mechanism other than decomposition of nNOS dimers.  相似文献   

7.
Stimulation of cardiomyocytes to endogenously evolve nitric oxide is shown by microsensor measurements on single cells to lead to transient nitric oxide concentrations of a few hundred nanomolar. At these submicromolar concentrations, no evidence could be found for the expected reaction between nitric oxide generated and the oxymyoglobin present in the cells: nitric oxide + oxymyoglobin --> nitrate + metmyoglobin. No metmyoglobin formation was detected by electron paramagnetic resonance spectroscopy, and microsensor measurements revealed near quantitative conversion of the nitric oxide to nitrite rather than nitrate ion. Moreover, the rate of nitrite formation is shown to be too rapid to be accounted for by non-enzymatic means. The essentially quantitative and rapid catabolism of nitric oxide to nitrite ion can plausibly be explained on the basis of a cycle of reactions catalyzed by cytochrome c oxidase. It is demonstrated with the purified hemoproteins in vitro that the terminal oxidase can outcompete oxymyoglobin for available nitric oxide. It is proposed that under normal physiological and most pathological (non-inflammatory) conditions, reaction with cytochrome c oxidase is the major route by which NO is removed from mitochondria-rich cells.  相似文献   

8.
Generation of superoxide from nitric oxide synthase   总被引:2,自引:0,他引:2  
  相似文献   

9.
The detrimental effects of estrogen on testicular function provide a conceptual basis to examine the speculative link between increased exposure to estrogens and spermatogenic cell death. Using an in vitro model, we provide an understanding of the events leading to estrogen-induced apoptosis in cells of spermatogenic lineage. Early events associated with estrogen exposure were up-regulation of FasL and increased generation of H(2)O(2), superoxide, and nitric oxide. The ability of anti-FasL antibodies to prevent several downstream biochemical changes and cell death induced by 17beta-estradiol substantiates the involvement of the cell death receptor pathway. Evidence for the amplification of the death-inducing signals through mitochondria was obtained from the transient mitochondrial hyperpolarization observed after estradiol exposure resulting in cytochrome c release. A combination of nitric oxide and superoxide but not H(2)O(2) was responsible for the mitochondrial hyperpolarization. Mn(III) tetrakis(4-benzoic acid)porphyrin chloride, an intracellular peroxynitrite scavenger, was able to reduce mitochondrial hyperpolarization and cell death. Although nitric oxide augmentation occurred through an increase in the expression of inducible nitric-oxide synthase, superoxide up-regulation was a product of estradiol metabolism. All of the above changes were mediated through an estrogen receptor-based mechanism because tamoxifen, the estrogen receptor modulator, was able to rescue the cells from estrogen-induced alterations. This study establishes the importance of the independent capability of cells of the spermatogenic lineage to respond to estrogens and most importantly suggests that low dose estrogens can potentially cause severe spermatogenic cellular dysfunction leading to impaired fertility even without interference of the hypothalamo-hypophyseal axis.  相似文献   

10.
Nitric oxide (NO) signal transduction may involve at least two targets: the guanylyl cyclase-coupled NO receptor (NO(GC)R), which catalyzes cGMP formation, and cytochrome c oxidase, which is responsible for mitochondrial O(2) consumption and which is inhibited by NO in competition with O(2). Current evidence indicates that the two targets may be similarly sensitive to NO, but quantitative comparison has been difficult because of an inability to administer NO in known, constant concentrations. We addressed this deficiency and found that purified NO(GC)R was about 100-fold more sensitive to NO than reported previously, 50% of maximal activity requiring only 4 nm NO. Conversely, at physiological O(2) concentrations (20-30 microM), mitochondrial respiration was 2-10-fold less sensitive to NO than estimated beforehand. The two concentration-response curves showed minimal overlap. Accordingly, an NO concentration maximally active on the NO(GC)R (20 nm) inhibited respiration only when the O(2) concentration was pathologically low (50% inhibition at 5 microM O(2)). Studies on brain slices under conditions of maximal stimulation of endogenous NO synthesis suggested that the local NO concentration did not rise above 4 nm. It is concluded that under physiological conditions, at least in brain, NO is constrained to target the NO(GC)R without inhibiting mitochondrial respiration.  相似文献   

11.
Tyrosine nitration is a posttranslational modification observed in many pathologic states that can be associated with peroxynitrite (ONOO(-)) formation. However, in vitro, peroxynitrite-dependent tyrosine nitration is inhibited when its precursors, superoxide (O(2)*(-)) and nitric oxide ((*)NO), are formed at ratios (O(2)*(-)/(*)NO) different from one, severely questioning the use of 3-nitrotyrosine as a biomarker of peroxynitrite-mediated oxidations. We herein hypothesize that in biological systems the presence of superoxide dismutase (SOD) and the facile transmembrane diffusion of (*)NO preclude accumulation of O(2)*(-) and (*)NO radicals under flux ratios different from one, preventing the secondary reactions that result in the inhibition of 3-nitrotyrosine formation. Using an array of reactions and kinetic constants, computer-assisted simulations were performed in order to assess the flux of 3-nitrotyrosine formation (J(NO(2(-))Y)) during exposure to simultaneous fluxes of superoxide (J(O(2)*(-))) and nitric oxide (J((*)NO)), varying the radical flux ratios (J(O(2)*(-))/ J((*)NO)), in the presence of carbon dioxide. With a basic set of reactions, J(NO(2(-))Y) as a function of radical flux ratios rendered a bell-shape profile, in complete agreement with previous reports. However, when superoxide dismutation by SOD and (*)NO decay due to diffusion out of the compartment were incorporated in the model, a quite different profile of J(NO(2(-))Y) as a function of the radical flux ratio was obtained: despite the fact that nitration yields were much lower, the bell-shape profile was lost and the extent of tyrosine nitration was responsive to increases in either O(2)*(-) or (*)NO, in agreement with in vivo observations. Thus, the model presented herein serves to reconcile the in vitro and in vivo evidence on the role of peroxynitrite in promoting tyrosine nitration.  相似文献   

12.
Endogenous nitric oxide modulates morphine-induced constipation.   总被引:2,自引:0,他引:2  
Administration of morphine in mice causes inhibition of the gastrointestinal transit of a charcoal meal. Morphine-induced constipation in mice seems to depend predominantly on action(s) on the central nervous system since N-methyl morphine, a quaternary derivative, inhibits intestinal transit only when administered intracerebroventricularly (i.c.v.). L- but not D-arginine, given intraperitoneally, reversed the constipation induced by both morphine and its quaternary analogue. L-arginine was ineffective when given i.c.v. and did not reverse atropine-induced constipation. These results suggest that L-arginine preferentially modulates opioid-induced constipation through a stereospecific and peripheral action(s). It is possible that the effect of L-arginine is achieved by increasing the amount of nitric oxide released by non-adrenergic, non-cholinergic nerves in the gut. Thus, L-arginine may represent a useful agent for the treatment of undesirable constipation associated with the use of narcotic analgesics.  相似文献   

13.
Decreased cerebral blood flow (CBF) has been observed following the resuscitation from neonatal hypoxic-ischemic injury, but its mechanism is not known. We address the hypothesis that reduced CBF is due to a change in nitric oxide (NO) and superoxide anion O(2)(-) balance secondary to endothelial NO synthase (eNOS) uncoupling with vascular injury. Wistar rats (7 day old) were subjected to cerebral hypoxia-ischemia by unilateral carotid occlusion under isoflurane anesthesia followed by hypoxia with hyperoxic or normoxic resuscitation. Expired CO(2) was determined during the period of hyperoxic or normoxic resuscitation. Laser-Doppler flowmetry was used with isoflurane anesthesia to monitor CBF, and cerebral perivascular NO and O(2)(-) were determined using fluorescent dyes with fluorescence microscopy. The effect of tetrahydrobiopterin supplementation on each of these measurements and the effect of apocynin and N(omega)-nitro-L-arginine methyl ester (L-NAME) administration on NO and O(2)(-) were determined. As a result, CBF in the ischemic cortex declined following the onset of resuscitation with 100% O(2) (hyperoxic resuscitation) but not room air (normoxic resuscitation). Expired CO(2) was decreased at the onset of resuscitation, but recovery was the same in normoxic and hyperoxic resuscitated groups. Perivascular NO-induced fluorescence intensity declined, and O(2)(-)-induced fluorescence increased in the ischemic cortex after hyperoxic resuscitation up to 24 h postischemia. L-NAME treatment reduced O(2)(-) relative to the nonischemic cortex. Apocynin treatment increased NO and reduced O(2)(-) relative to the nonischemic cortex. The administration of tetrahydrobiopterin following the injury increased perivascular NO, reduced perivascular O(2)(-), and increased CBF during hyperoxic resuscitation. These results demonstrate that reduced CBF follows hyperoxic resuscitation but not normoxic resuscitation after neonatal hypoxic-ischemic injury, accompanied by a reduction in perivascular production of NO and an increase in O(2)(-). The finding that tetrahydrobiopterin, apocynin, and L-NAME normalized radical production suggests that the uncoupling of perivascular NOS, probably eNOS, due to acquired relative tetrahydrobiopterin deficiency occurs after neonatal hypoxic-ischemic brain injury. It appears that both NOS uncoupling and the activation of NADPH oxidase participate in the changes of reactive oxygen concentrations seen in cerebral hypoxic-ischemic injury.  相似文献   

14.
Steady-state nitric oxide concentrations during denitrification   总被引:10,自引:0,他引:10  
Three species of denitrifying bacteria, Paracoccus denitrificans, Pseudomonas stutzeri strain JM300, and Achromobacter cycloclastes, were allowed to reduce nitrate or nitrite in anaerobic, closed vials while the equilibration of gases between aqueous and gas phases was facilitated by vigorous stirring. The gas phase was sampled and analyzed for NO with use of a chemiluminescence detector calibrated against bottled NO standards or against NO produced by the nitrite-iodide reaction. [NOaq] was inferred from [NOg] and the solubility of NO. NO was detected only during denitrification in amounts that, once established, did not change with time, were independent of the initial concentration of nitrate or nitrite, and were largely independent of cell concentration, at least when nitrate was the oxidant. The usual level of NO was promptly re-established following the addition of exogenous NO or following the loss of NO by sparging. The aforementioned properties are expected for a steady-state intermediate in denitrification. Steady-state [NOaq] ranged between 1 and 65 nM depending on species and conditions. Similar results were also obtained in a related experiment in which P. stutzeri strain ZoBell respired nitrite under growth conditions. The very low steady-state [NOaq] observed during denitrification imply that the maximum activity of nitric oxide reductase in vivo, if it could be realized, would be large relative to that for nitrite reductase. This circumstance allows NO to be an intermediate without reaching toxic steady-state levels.  相似文献   

15.
Regulation of xanthine oxidase by nitric oxide and peroxynitrite   总被引:5,自引:0,他引:5  
Xanthine oxidase (XO) is a central mechanism of oxidative injury as occurs following ischemia. During the early period of reperfusion, both nitric oxide (NO(*)) and superoxide (O-*(2)) generation are increased leading to the formation of peroxynitrite (ONOO(-)); however, questions remain regarding the presence and nature of the interactions of NO(*) or ONOO(-) with XO and the role of this process in regulating oxidant generation. Therefore, we determined the dose-dependent effects of NO(*) and ONOO(-) on the O-*(2) generation and enzyme activity of XO, respectively, by EPR spin trapping of O-*(2) using 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide and spectrophotometric assay. ONOO(-) markedly inhibited both O-*(2) generation and XO activity in dose-dependent manner, while NO(*) from NO(*) gas in concentrations up to 200 microM had no effect. Furthermore, we observed that NO(*) donors such as NOR-1 also inhibited O-*(2) generation and XO activity; however, these effects were O-*(2)-dependent and blocked by superoxide dismutase or ONOO(-) scavengers. Finally, we found that ONOO(-) totally abolished the Mo(V) EPR spectrum. These changes were irreversible, suggesting oxidative disruption of the critical molybdenum center of the catalytic site. Thus, ONOO(-) formed in biological systems can feedback and down-regulate XO activity and O-*(2) generation, which in turn may serve to limit further ONOO(-) formation.  相似文献   

16.
Concomitant production of nitric oxide and superoxide in human macrophages   总被引:2,自引:0,他引:2  
Many harmful effects of nitric oxide are caused by the reaction of NO with superoxide anion. The present study was carried out to find out the concomitant production of superoxide and to investigate a suitable inhibitor of NO, which is produced by iNOS. THP-1 cells were differentiated into macrophages by PMA and cytokine. Addition of L-NAME showed decrement in superoxide production. Addition of apocynin, aminoguanidine or ONO 1714 brought about a significant reduction in superoxide production. The expressions of p67 and p47(phox) were reduced by the addition of apocynin, aminoguanidine or ONO 1714 whereas xanthine oxidase and cyclooxygenase did not have a major role in superoxide production. The results of the present study show that iNOS and NADPH oxidase play an important role in superoxide release. It suggests that addition of iNOS inhibitor together with apocynin may be more effective in case of therapeutic application in disease conditions like atherosclerosis.  相似文献   

17.
18.
Inducible nitric oxide synthase modulates lipolysis in adipocytes   总被引:5,自引:0,他引:5  
The role of inducible nitric oxide synthase (iNOS) in the modulation of adipocyte lipolysis was investigated. Treatment of white and brown adipose cell lines and mouse adipose explants with a mixture of tumor necrosis factor-alpha, interferon-gamma, and lipopolysaccharide (LPS) doubled the lipolytic rate, and this was associated with marked induction of iNOS expression and nitric oxide (NO) production. iNOS inhibition by 1400W, aminoguanidine, or L-NIL pretreatment further increased the cytokine/LPS-mediated lipolysis by 30% (P < 0.05) in cultured adipocytes and in adipose explants. However, this potentiating effect of iNOS inhibition was abolished in adipose explants isolated from iNOS knockout mice. Pharmacological inhibitors of adenylyl cyclase or protein kinase A reduced cytokine/LPS-induced lipolysis and also blunted the potentiating effect of iNOS inhibition on the lipolytic rate. Furthermore, addition of the antioxidants l-cystine and l-glutathione to cytokine/LPS-stimulated adipocytes mimicked the lipolytic effect of iNOS inhibition. In conclusion, inhibition of iNOS activity in adipocytes potentiates cytokine/LPS-induced lipolysis. This effect was fully reversed by adenylyl cyclase and protein kinase A inhibitors but was mimicked by cellular antioxidants. These data suggest that iNOS-mediated NO production counteracts cytokine/LPS-mediated lipolysis in adipocytes and that this feedback mechanism involves an oxidative process upstream of cAMP production in the signaling pathway.  相似文献   

19.
The study of the ability of Lactobacillus plantarum 8P-A3 to synthesize nitric oxide (NO) showed that this strain lacks nitrite reductase. However, analysis by the EPR method revealed the presence of nitric oxide synthase activity in this strain. Like mammalian nitric oxide synthase, lactobacillar NO synthase is involved in the formation of nitric oxide from L-arginine. L. plantarum 8P-A3 does not produce NO in the course of denitrification process. The regulatory role of NO in symbiotic bacteria is discussed.  相似文献   

20.
Previous research has described how high cellular metabolism creates an acidic environment in inflammatory cells during respiratory burst. The aim of our work was to describe the acid-base dependence of exudate in superoxide (O2.-) and nitric oxide (NO.) generation by inflammatory cells from a carrageenan-granuloma. Although the carrageenan solution was alkaline (pH 7.74 when equilibrated with air) the exudate showed an acidification that stabilised at around 7 units of pH. A notable hypercapnia, but not hypoxia, was found in the exudate at up to 24 h. The effect of extracellular acidosis on O2.- and NO. production by inflammatory cells was also studied. The maximum O2.- production and the lowest levels of NO. were found at pH 7, which was closer to the pH of the granuloma-pouch. These results suggest that experiments with inflammatory cells ex vivo should be carried out at an identical pH to that found in vivo in order to reproduce the physiological mechanisms of free radical generation during inflammatory processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号