首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yoon CH  Hyun KH  Kim RK  Lee H  Lim EJ  Chung HY  An S  Park MJ  Suh Y  Kim MJ  Lee SJ 《FEBS letters》2011,585(14):2331-2338
A subpopulation of cancer cells with stem cell properties is responsible for tumor formation, maintenance, and malignant progression; however, the molecular mechanisms underlying the maintenance of cancer stem-like cell properties have remained unclear. Here, we show that the Rho family GTPase Rac1 is involved in the glioma stem-like cell (GSLC) maintenance and tumorigenicity in human glioma. The Rac1-Pak signaling was markedly activated in GSLCs. Knockdown of Rac1 caused reduction of expression of GSLC markers, self-renewal-related proteins and neurosphere formation. Moreover, down-regulation of Rac1 suppressed the migration, invasion, and malignant transformation in GSLCs. Furthermore, inhibition of Rac1 enhanced radiation sensitivity of GSLCs. These results indicate that the small GTPase Rac1 is involved in the maintenance of stemness and malignancies in GSLCs.  相似文献   

2.
3.
Human glioblastomas (GBM) are thought to be initiated by glioma stem-like cells (GSLCs). GSLCs also participate in tumor neovascularization by transdifferentiating into vascular endothelial cells. Here, we report a critical role of GSLCs in the formation of vasculogenic mimicry (VM), which defines channels lined by tumor cells to supply nutrients to early growing tumors and tumor initiation. GSLCs preferentially expressed vascular endothelial growth factor receptor-2 (VEGFR-2) that upon activation by VEGF, mediated chemotaxis, tubule formation and increased expression of critical VM markers by GSLCs. Knockdown of VEGFR-2 in GSLCs by shRNA markedly reduced their capacity of self-renewal, forming tubules, initiating xenograft tumors, promoting vascularization and the establishment of VM. Our study demonstrates VEGFR-2 as an essential molecule to sustain the “stemness” of GSLCs, their capacity to initiate tumor vasculature, and direct initiation of tumor.  相似文献   

4.
Erythropoietin (EPO), a hematopoietic factor, is also required for normal brain development, and its receptor is localized in brain. Our previous study showed that EPO promotes differentiation of neuronal stem cells into astrocytes. Since astrocytes have influence on the neuronal function, we investigated whether EPO-activated astrocytes could stimulate differentiation of neuronal stem cells into neurons. EPO did not promote neuronal differentiation of neuronal stem cells isolated from 17 day embryos, however, neuronal differentiation was promoted when the neuronal stem cells were co-cultured with astrocyte isolated from post neonatal (Day 1) rat brain. Moreover, neuronal differentiation was further promoted when the neuronal stem cells were cultured with astrocyte culture medium treated by EPO (10U/ml) showing increase of morphological differentiation, and expression of neuronal differentiation marker proteins, neurofilament, and tyrosine hydroxylase. The promoting effect of EPO-treated astrocyte medium was also found in the differentiation of PC12 cells. EPO-promoted morphological differentiation of neuronal stem cells as well as astrocytes was dose dependently reduced by treatment with anti-EPO receptor antibodies in culture with astrocyte culture medium. To clarify whether EPO itself or via production of well-known neurotropic factor could promote neuronal cell differentiation, we determined the level of neurotropic factors in the EPO-treated astrocytes. Compared to untreated astrocytes, EPO-treated astrocytes increased about 2-fold in beta-NGF and 3-4-fold in BMP2, but did not increase BNDF and NT-3 levels. Since the previous study showed that extracellular signal-regulated kinase (ERK) is involved in activation of astrocytes by EPO, we determined whether generation of neurotrophic factor may also be involved with the ERK pathway. In the presence of ERK inhibitor, PD98059, the generation of beta-NGF was diminished in a dose dependent manner consistent with the inhibiting effect on neuronal differentiation. These data demonstrate that EPO promotes neuronal cell differentiation through increased release of beta-NGF and BMP2 from astrocytes, and this effect may be associated with ERK pathway signals.  相似文献   

5.
The invasion of malignant glioma cells into the surrounding normal brain tissues is crucial for causing the poor outcome of this tumor type. Recent studies suggest that glioma stem-like cells (GSLCs) mediate tumor invasion. However, it is not clear whether microenvironment factors, such as tumor-associated microglia/macrophages (TAM/Ms), also play important roles in promoting GSLC invasion. In this study, we found that in primary human gliomas and orthotopical transplanted syngeneic glioma, the number of TAM/Ms at the invasive front was correlated with the presence of CD133(+) GSLCs, and these TAM/Ms produced high levels of TGF-β1. CD133(+) GSLCs isolated from murine transplanted gliomas exhibited higher invasive potential after being cocultured with TAM/Ms, and the invasiveness was inhibited by neutralization of TGF-β1. We also found that human glioma-derived CD133(+) GSLCs became more invasive upon treatment with TGF-β1. In addition, compared with CD133(-) committed tumor cells, CD133(+) GSLCs expressed higher levels of type II TGF-β receptor (TGFBR2) mRNA and protein, and downregulation of TGFBR2 with short hairpin RNA inhibited the invasiveness of GSLCs. Mechanism studies revealed that TGF-β1 released by TAM/Ms promoted the expression of MMP-9 by GSLCs, and TGFBR2 knockdown reduced the invasiveness of these cells in vivo. These results demonstrate that TAM/Ms enhance the invasiveness of CD133(+) GSLCs via the release of TGF-β1, which increases the production of MMP-9 by GSLCs. Therefore, the TGF-β1 signaling pathway is a potential therapeutic target for limiting the invasiveness of GSLCs.  相似文献   

6.
Solid malignancies contain sphere-forming stem-like cells that are particularly efficient in propagating tumors. Identifying agents that target these cells will advance the development of more effective therapies. Recent converging evidence shows that c-Met expression marks tumor-initiating stem-like cells and that c-Met signaling drives human glioblastoma multiforme (GBM) cell stemness in vitro. However, the degree to which tumor-propagating stem-like cells depend on c-Met signaling in histologically complex cancers remains unknown. We examined the effects of in vivo c-Met pathway inhibitor therapy on tumor-propagating stem-like cells in human GBM xenografts. Animals bearing pre-established tumor xenografts expressing activated c-Met were treated with either neutralizing anti- hepatocyte growth factor (HGF) monoclonal antibody L2G7 or with the c-Met kinase inhibitor PF2341066 (Crizotinib). c-Met pathway inhibition inhibited tumor growth, depleted tumors of sphere-forming cells, and inhibited tumor expression of stem cell markers CD133, Sox2, Nanog, and Musashi. Withdrawing c-Met pathway inhibitor therapy resulted in a substantial rebound in stem cell marker expression concurrent with tumor recurrence. Cells derived from xenografts treated with anti-HGF in vivo were depleted of tumor-propagating potential as determined by in vivo serial dilution tumor-propagating assay. Furthermore, daughter xenografts that did form were 12-fold smaller than controls. These findings show that stem-like tumor-initiating cells are dynamically regulated by c-Met signaling in vivo and that c-Met pathway inhibitors can deplete tumors of their tumor-propagating stem-like cells.  相似文献   

7.
Identification of stem cell-like brain tumor cells (brain tumor stem-like cells; BTSC) has gained substantial attention by scientists and physicians. However, the mechanism of tumor initiation and proliferation is still poorly understood. CD44 is a cell surface protein linked to tumorigenesis in various cancers. In particular, one of its variant isoforms, CD44v6, is associated with several cancer types. To date its expression and function in BTSC is yet to be identified. Here, we demonstrate the presence and function of the variant form 6 of CD44 (CD44v6) in BTSC of a subset of glioblastoma multiforme (GBM). Patients with CD44(high) GBM exhibited significantly poorer prognoses. Among various variant forms, CD44v6 was the only isoform that was detected in BTSC and its knockdown inhibited in vitro growth of BTSC from CD44(high) GBM but not from CD44(low) GBM. In contrast, this siRNA-mediated growth inhibition was not apparent in the matched GBM sample that does not possess stem-like properties. Stimulation with a CD44v6 ligand, osteopontin (OPN), increased expression of phosphorylated AKT in CD44(high) GBM, but not in CD44(low) GBM. Lastly, in a mouse spontaneous intracranial tumor model, CD44v6 was abundantly expressed by tumor precursors, in contrast to no detectable CD44v6 expression in normal neural precursors. Furthermore, overexpression of mouse CD44v6 or OPN, but not its dominant negative form, resulted in enhanced growth of the mouse tumor stem-like cells in vitro. Collectively, these data indicate that a subset of GBM expresses high CD44 in BTSC, and its growth may depend on CD44v6/AKT pathway.  相似文献   

8.
Glioma stem-like cells constitute one of the potential origins of gliomas, and therefore, their elimination is an essential factor for the development of efficient therapeutic strategies. Cannabinoids are known to exert an antitumoral action on gliomas that relies on at least two mechanisms: induction of apoptosis of transformed cells and inhibition of tumor angiogenesis. However, whether cannabinoids target human glioma stem cells and their potential impact in gliomagenesis are unknown. Here, we show that glioma stem-like cells derived from glioblastoma multiforme biopsies and the glioma cell lines U87MG and U373MG express cannabinoid type 1 (CB(1)) and type 2 (CB(2)) receptors and other elements of the endocannabinoid system. In gene array experiments, CB receptor activation altered the expression of genes involved in the regulation of stem cell proliferation and differentiation. The cannabinoid agonists HU-210 and JWH-133 promoted glial differentiation in a CB receptor-dependent manner as shown by the increased number of S-100beta- and glial fibrillary acidic protein-expressing cells. In parallel, cannabinoids decreased the cell population expressing the neuroepithelial progenitor marker nestin. Moreover, cannabinoid challenge decreased the efficiency of glioma stem-like cells to initiate glioma formation in vivo, a finding that correlated with decreased neurosphere formation and cell proliferation in secondary xenografts. Gliomas derived from cannabinoid-treated cancer stem-like cells were characterized with a panel of neural markers and evidenced a more differentiated phenotype and a concomitant decrease in nestin expression. Overall, our results demonstrate that cannabinoids target glioma stem-like cells, promote their differentiation, and inhibit gliomagenesis, thus giving further support to their potential use in the management of malignant gliomas.  相似文献   

9.
To provide suitable models for human GBM cancer stem cells in vitro and in vivo, and investigate their biological characteristics, a new human GBM cancer stem-like cell line, WJ2, was established in this experiment through serial passages from adherent monolayer culture to nonadherent tumor sphere culture in turns; Its partial biological characteristics were studied through cell proliferation and tumor sphere assay; cell cycle distribution, side population, and CD133 phenotype were analyzed with FCM. The expressions of CD133, Nestin, and GFAP of cancer stem-like cells and xenograft tumor cells were detected with RT-PCR and immunohistochemistry. Biological characterization, side population, CD133 phenotype and CD133 Nestin, BCRP-1, Wnt-1 gene expression revealed the stemness of this cancer stem-like cell line. Tumorigenicity heterotransplanted in nude mice; histopathological characteristics of xenograft tumor, and expressions of CD133, Nestin, and GFAP of xenograft tumor cells indicated that xenograft tumors recapitulated the phenotype and biological characterization of human primary GBM. All findings of this experimental study suggested that WJ2 cancer stem-like cell line could accurately mimic human GBM cancer stem cell in vitro and in vivo; it would be useful in the cellular and molecular studies as well as in testing novel therapies of CSC-based anti-cancer therapies for human GBM.  相似文献   

10.
Self-renewal, differentiation, and tumorigenicity characterize cancer stem cells (CSCs), which are rare and maintained by specific cell fate regulators. CSCs are isolated from glioblastoma multiforme (GBM) and may be responsible for the lethality of incurable brain tumors. Brain CSCs may arise from the transformation of undifferentiated, nestin-positive neural stem or progenitor cells and GFAP-expressing astrocytes. Here, we report a role of Nanog in the genesis of cancer stem-like cells. Using primary murine p53-knockout astrocytes (p53−/− astrocytes), we provide evidence that enforced Nanog expression can increase the cellular growth rate and transform phenotypes in vitro and in vivo. In addition, Nanog drives p53−/− astrocytes toward a dedifferentiated, CSC-like phenotype with characteristic neural stem cell/progenitor marker expression, neurosphere formation, self-renewal activity, and tumor development. These findings suggest that Nanog promotes dedifferentiation of p53-deficient mouse astrocytes into cancer stem-like cells by changing the cell fate and transforming cell properties.  相似文献   

11.
Glioblastomas (GBMs) are the most lethal primary brain tumours. Increasing evidence shows that brain tumours contain the population of stem cells, so‐called cancer stem cells (CSCs). Stem cell marker CD133 was reported to identify CSC population in GBM. Further studies have indicated that CD133 negative cells exhibiting similar properties and are able to initiate the tumour, self‐renew and undergo multilineage differentiation. GBM is a highly heterogeneous tumour and may contain different stem cell populations with different functional properties. We characterized five GBM cell lines, established from surgical samples, according to the marker expression, proliferation and differentiation potential. CD133 positive cell lines showed increased proliferation rate in neurosphere condition and marked differentiation potential towards neuronal lineages. Whereas two cell lines low‐expressing CD133 marker showed mesenchymal properties in vitro, that is high proliferation rate in serum condition and differentiation in mesenchymal cell types. Further, we compared therapy resistance capacity of GBM cell lines treated with hydroxyurea. Our results suggest that CSC concept is more complex than it was believed before, and CD133 could not define entire stem cell population within GBM. At least two different subtypes of GBM CSCs exist, which may have different biological characteristics and imply different therapeutic strategies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Glioblastoma (GBM) is the most malignant primary brain tumor, with an average survival rate of 15 months. GBM is highly refractory to therapy, and such unresponsiveness is due, primarily, but not exclusively, to the glioma stem-like cells (GSCs). This subpopulation express stem-like cell markers and is responsible for the heterogeneity of GBM, generating multiple differentiated cell phenotypes. However, how GBMs maintain the balance between stem and non-stem populations is still poorly understood. We investigated the GBM ability to interconvert between stem and non-stem states through the evaluation of the expression of specific stem cell markers as well as cell communication proteins. We evaluated the molecular and phenotypic characteristics of GSCs derived from differentiated GBM cell lines by comparing their stem-like cell properties and expression of connexins. We showed that non-GSCs as well as GSCs can undergo successive cycles of gain and loss of stem properties, demonstrating a bidirectional cellular plasticity model that is accompanied by changes on connexins expression. Our findings indicate that the interconversion between non-GSCs and GSCs can be modulated by extracellular factors culminating on differential expression of stem-like cell markers and cell-cell communication proteins. Ultimately, we observed that stem markers are mostly expressed on GBMs rather than on low-grade astrocytomas, suggesting that the presence of GSCs is a feature of high-grade gliomas. Together, our data demonstrate the utmost importance of the understanding of stem cell plasticity properties in a way to a step closer to new strategic approaches to potentially eliminate GSCs and, hopefully, prevent tumor recurrence.  相似文献   

13.
14.
Although CD90 has been identified as a marker for various kinds of stem cells including liver cancer stem cells (CSCs) that are responsible for tumorigenesis, the potential role of CD90 as a marker for CSCs in gliomas has not been characterized. To address the issue, we investigated the expression of CD90 in tissue microarrays containing 15 glioblastoma multiformes (GBMs), 19 WHO grade III astrocytomas, 13 WHO grade II astrocytomas, 3 WHO grade I astrocytomas and 8 normal brain tissues. Immunohistochemical analysis showed that CD90 was expressed at a medium to high level in all tested high-grade gliomas (grade III and GBM) whereas it was barely detectable in low-grade gliomas (grade I and grade II) and normal brains. Double immunofluorescence staining for CD90 and CD133 in GBM tissues revealed that CD133(+) CSCs are a subpopulation of CD90(+) cells in GBMs in vivo. Flow cytometry analysis of the expression of CD90 and CD133 in GBM-derived stem-like neurospheres further confirmed the conclusion in vitro. The expression levels of both CD90 and CD133 were reduced along with the loss of stem cells after differentiation. Furthermore, the limiting dilution assay demonstrated that the sphere formation ability was comparable between the CD90(+)/CD133(+) and the CD90(+)/CD133(-) populations of GBM neurospheres, which is much higher than that of the CD90(-)/CD133(-) population. We also performed double staining for CD90 and a vascular endothelial cell marker CD31 in tissue microarrays which revealed that the CD90(+) cells were clustered around the tumor vasculatures in high-grade glioma tissues. These findings suggest that CD90 is not only a potential prognostic marker for high-grade gliomas but also a marker for CSCs within gliomas, and it resides within endothelial niche and may also play a critical role in the generation of tumor vasculatures via differentiation into endothelial cells.  相似文献   

15.
BACKGROUND/AIMS: Embryonic stem cell (ESC) transplantation offers new therapeutic strategies for neurodegenerative diseases and injury. However, the mechanisms underlying integration and differentiation of engrafted ESCs are poorly understood. This study elucidates the influence of exogenous signals on ESC differentiation using in vitro modelling of non-stem/stem cell interactions. METHODS: Murine ESCs were co-cultured with endothelial cells and astrocytes or conditioned medium obtained from endothelial or astrocyte cultures. After 7 days of co-culture isolated RNA was analysed using RT-PCR for the expression of pluripotency marker oct-4, neural progenitor marker nestin, and neurofilament (NFL), an early marker of neuronal lineage commitment. The presence of the glial cell surface marker A2B5 was determined in ESCs by flow cytometry. RESULTS: Neuronal differentiation was inhibited in ESCs when grown in close vicinity to cerebral endothelial or glial cells. Under these conditions, ESC differentiation was predominantly directed towards a glial fate. However, treatment of ESCs with endothelial cell- or astrocyte-conditioned medium promoted neuronal as well as glial differentiation. CONCLUSION: Our results indicate that ESC fate is determined by endothelial and glial cells that comprise the environmental niche of these stem cells in vivo. The direction of differentiation processes appears to be dependent on humoral factors secreted by adjacent cell lines.  相似文献   

16.
17.
Glioblastoma multiforme (GBM) is the most common brain tumour, characterized by a central and partially necrotic (i.e., hypoxic) core enriched in cancer stem cells (CSCs). We previously showed that the most hypoxic and immature (i.e., CSCs) GBM cells were resistant to Temozolomide (TMZ) in vitro, owing to a particularly high expression of O6-methylguanine-DNA-methyltransferase (MGMT), the most important factor associated to therapy resistance in GBM. Bone morphogenetic proteins (BMPs), and in particular BMP2, are known to promote differentiation and growth inhibition in GBM cells. For this reason, we investigated whether a BMP2-based treatment would increase TMZ response in hypoxic drug-resistant GBM-derived cells. Here we show that BMP2 induced strong differentiation of GBM stem-like cells and subsequent addition of TMZ caused dramatic increase of apoptosis. Importantly, we correlated these effects to a BMP2-induced downregulation of both hypoxia-inducible factor-1α (HIF-1α) and MGMT. We report here a novel mechanism involving the HIF-1α-dependent regulation of MGMT, highlighting the existence of a HIF-1α/MGMT axis supporting GBM resistance to therapy. As confirmed from this evidence, over-stabilization of HIF-1α in TMZ-sensitive GBM cells abolished their responsiveness to it. In conclusion, we describe a HIF-1α-dependent regulation of MGMT and suggest that BMP2, by down-modulating the HIF-1α/MGMT axis, should increase GBM responsiveness to chemotherapy, thus opening the way to the development of future strategies for GBM treatment.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号