首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aromatic amino acid transport in Yersinia pestis.   总被引:2,自引:2,他引:0       下载免费PDF全文
The uptake and concentration of aromatic amino acids by Yersinia pestis TJW was investigated using endogenously metabolizing cells. Transport activity did not depend on either protein synthesis or exogenously added energy sources such as glucose. Aromatic amino acids remained as the free, unaltered amino acid in the pool fraction. Phenylalanine and tryptophan transport obeyed Michaelis-Menten-like kinetics with apparent Km values of 6 x 10(-7) to 7.5 x 10(-7) and 2 x 10(-6) M, respectively. Tyrosine transport showed biphasic concentration-dependent kinetics that indicated a diffusion-like process above external tyrosine concentrations of 2 x 10(-6) M. Transport of each aromatic amino acid showed different pH and temperature optima. The pH (7.5 TO8) and temperature (27 C) optima for phenylalanine transport were similar to those for growth. Transport of each aromatic amino acid was characterized by Q10 values of approximately 2. Cross inhibition and exchange experiments between the aromatic amino acids and selected aromatic amino acid analogues revealed the existence of three transport systems: (i) tryptophan specific, (ii) phenylalanine specific with limited transport activity for tyrosine and tryptophan, and (iii) general aromatic system with some specificity for tyrosine. Analogue studies also showed that the minimal stereo and structural features for phenylalanine recognition were: (i) the L isomer, (ii) intact alpha amino and carboxy group, and (iii) unsubstituted aromatic ring. Aromatic amino acid transport was differentially inhibited by various sulfhydryl blocking reagents and energy inhibitors. Phenylalanine and tyrosine transport was inhibited by 2,4-dinitrophenol, potassium cyanide, and sodium azide. Phenylalanine transport showed greater sensitivity to inhibition by sulfhydryl blocking reagents, particularly N-ethylmaleimide, than did tyrosine transport. Tryptophan transport was not inhibited by either sulfhydryl reagents or sodium azide. The results on the selective inhibition of aromatic amino acid transport provide additional evidence for multiple transport systems . These results further suggest both specific mechanisms for carrier-mediated active transport and coupling to metabolic energy.  相似文献   

2.
Yersinia pestis TJW, an avirulent wild-type strain, requires phenylalanine and methionine for growth. It was of interest to examine and define the methionine transport system because of this requirement. The methionine system showed saturation kinetics with a Km for transport of approximately 9 times 10(-7) M. After 8 s of methionine transport, essentially all of the methionine label appeared in S-adenosyl-L-methionine (SAM) as detected in ethanol extracts. Small amounts of free methionine was detected intracellularly after 1 min of transport. Addition of glucose increased significantly the amount of intracellular methionine at 1 min. A series of SAM metabolic products was detected after 90 s to 5 min of transport including: 5'-thiomethyladenosine, homoserine lactone, S-adenosyl homoserine, and a fluorescent methyl receptor compound. Results from assays for SAM synthetase in spheroplast fractions showed a small (16%) but significant portion of synthetase associated with the membrane. However, most of the enzyme activity was associated with the cytoplasmic fraction. Methionine transport was characterized by a high degree of stereospecificity. No competition occurred from structurally unrelated amino acids. Although uptake was inhibited by uncoupling and sulfhydryl reagents, no efflux was observed. Results using energy inhibitors on unstarved and starved cells showed that respiratory inhibitors such as potassium cyanide (KCN) and amytal were most effective, and that arsenate was least effective. KCN plus arsenate completely blocked utilization of energy derived from glucose, and KCN completely blocked utilization of energy deived from D-lactate. The data indicate that methionine transport in Y. pestis is linked to the trapping of methionine in SAM. The results further suggest that this transport system can be classified as a permease-bound system where transport is coupled to an energized membrane state and to respiration.  相似文献   

3.
ABSTRACT. Leishmania tropica promastigotes transport α-aminoisobutyric acid (AIB), the nonmetabolizable analog of neutral amino acids, against a substantial concentration gradient. AIB is not incorporated into cellular material but accumulates within the cells in an unaltered form. Intracellular AIB exchanges with external AIB. Various energy inhibitors (amytal, HOQNO, KCN, DNP, CCCP, and arsenate) and sulfhydryl reagents (NEM, pCMB, and iodoacetate) severely inhibit uptake. The uptake system is saturable with reference to AIB-and the Lineweaver-Burk plots show biphasic kinetics suggesting the involvement of two transport systems. AIB shares a common transport system with alanine, cysteine, glycine, methionine, serine, and proline. Uptake is regulated by feedback inhibition and transinhibition.  相似文献   

4.
R Jeanjean  A Hourmant  G Ducet 《Biochimie》1975,57(3):383-390
The effect of Sulphydryl reagents have been investigated. pCMB inhibits the transport of phosphate in Chlorella pyrenoidosa. This inhibition is immediate and does not change as a function of time of incubation. This inhibition affects non starved and starved cells (phosphate omitted). pCMPS and Mersalyl act in the same manner as pCMB. When these compounds are used at low concentrations, inhibition of phosphate uptake is observed only in starved cells. The substrate (phosphate) cannot provide protection against this inhibition. NEM inhibits phosphate uptake and this inhibition increases as a function of time of incubation. When the time of incubation is very short (about 15 seconds) the effects seems to be superficial and NEM reacts with SH groups involved in the transport system. When phosphate is present (for 15 seconds of incubation with NEM) the inhibition is less important than when phosphate is omitted. The substrate protects against NEM, but this protection disappears as the incubation with NEM is prolonged. NEM inhibits phosphate uptake in non starved and starved cells, however, it is observed that the inhibition is less important in starved cells than in non starved cells. The authors conclude that two kinds of SH groups might exist in the phosphate transport system, one reacting with pCMB and the other with NEM.  相似文献   

5.
The active transport of galactose across the intestinal wall (everted sacs) of the snail Cryptomphalus hortensis Müller has been studied in vitro, under several metabolic conditions. Anaerobiosis does not change the serosal/mucosal galactose gradients which are developed in oxygen atmosphere. Dinitrophenol (10(-4) M) greatly increased the O2 uptake by the tissue and clearly inhibits the sugar transport. At 5 times 10(-4) M concentration, DNP totally prevents the uphill transport while the O2 uptake is normal. The inhibition produced by DNP does not increase by anaerobiosis. Fluoride inhibits the galactose transport and also the O2 uptake. It is deduced that in snail intestine the energy for the active transport of galactose can be supplied by aerobic as much as by anaerobic metabolism. The inhibition by dinitrophenol seems to be independent of its uncoupling action on the oxidative phosphorylation. The inhibitory effect of NaF may be due both to glycolisis inhibition and to alteration of the digestive epithelium.  相似文献   

6.
Polyamines (putrescine, spermidine, and spermine) are normal cellular constituents able to modulate cellular proliferation and differentiation in a number of developing systems. Ornithine decarboxylase (ODC), the rate-limiting enzyme in the polyamine biosynthetic pathway, has been shown to be causally related to an increase in glycosaminoglycan synthesis in murine embryonic palatal mesenchyme cells (MEPM). In order to understand other mechanisms that exist to regulate polyamine levels in cells derived from the developing craniofacial area, the present study investigated the capacity of MEPM cells to accumulate exogenous putrescine and tests the hypothesis that polyamine transport can serve as an adaptational response of MEPM cells to a change in their ability to synthesize polyamines. Transport was initiated in confluent cultures of MEPM cells by the addition of 0.1 microCi/ml of 14C-putrescine. The rate of transport, monitored for 20-120 minutes, was found to be a time-dependent saturable process. The rate of initial transport, determined by incubating MEPM cells for 15 minutes in the presence of different concentrations (1.0-20.0 microM) of 14C-putrescine, was also found to be saturable, suggesting a carrier-mediated event. Lineweaver-Burk analysis of these data revealed an apparent Km of 5.78 microM and a Vmax of 2.63 nmol/mg protein/15 minutes. Transport measured either at 4 degrees C or in the presence of 2-4 DNP was dramatically inhibited. Thus, putrescine transport is an active process, dependent upon metabolic energy. Conditions in which 1) NaCl was iso-osmotically replaced with choline chloride or 2) the Na+-electrochemical gradient was dissipated with Na+, K+-specific ionophores resulted in a decreased rate of transport indicating that putrescine transport in these cells is Na+ dependent. Noncompetitive inhibition assays utilizing sulfhydryl reagents that blocked sulfhydryl groups inhibited putrescine transport, suggesting that sulfhydryl groups are important for putrescine uptake. Competitive inhibition assays demonstrated that while spermidine and spermine inhibited putrescine uptake, ornithine did not inhibit transport. Spermidine, spermine, and putrescine thus appear to share a common transport system that is separate from that for ornithine. Putrescine transport is subject to adaptive regulation in both exponentially growing and confluent cultures of MEPM cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
When suspension-cultured cells of Atropa belladonna L. were in late growth phase, phenylalanine, one of the early precursors of atropine, was taken up mainly by diffusion without carrier but also actively via mediated transport. The uptake capacity of different callus lines varied from 0.4 to 1.9 μol (g fresh weight)−1 h−1 with an optimum pH at 4.5 or 5.0, depending on the callus line, 2,4-Dinitrophenol (DNP) and KCN inhibited about 35–45% of the total uptake in all tested callus lines, so that a part of the uptke was dependent on metabolic energy.
The rate of phenylalanine uptake was fastest from 2 to 7 days after the start of the suspension culture. The increase was from 50 to 300%, depending on the cell line. The enhancement was mainly due to increased mediated uptake and could be inhibited by cycloheximide during the first days of the suspension culture. Glutamine, added to the nutrient medium, also prevented the increase. The inhibition caused by glutamine together with cycloheximide was not additive. Obviously, glutamine did not directly affect the carrier, but possibly repressed its synthesis. When cells entered the stationary phase, the total uptake began to decrease, and most of it was non-mediated. The suspension cultures of A. belladonna had only limited capacity to regulate the transport of phenylalanine into the cells at this phase of growth.  相似文献   

8.
Differences exist in the coupling of energy to transport of glycine and phenylalanine in aerobically grown cells of Escherichia coli. Energy derived from respiration, although involved in both uptake systems, is not employed identically as shown by kinetic effects of cyanide and anoxia and by temperature dependencies. Additional evidence for aerobic differences was provided by the effects of azide which greatly decreased initial rates of uptake of glycine but not phenylalanine. The effect on glycine uptake was not due to uncoupling of oxidative phosphorylation or to a decrease in respiration rate. Evidence for anaerobic differences was provided by the addition of either glucose or ferricyanide to cell suspensions containing glycerol, thereby maintaining anoxic uptake of phenylalanine, but not glycine, at the aerobic level. Ferricyanide stimulation required a functional Ca, Mg-adenosine 5'-triphosphatase and involved cell metabolism. Ferricyanide was also found to produce differential stimulation of other amino acid transport systems; tyrosine, tryptophan and leucine uptakes were stimulated whereas those for alanine, proline, threonine, and glutamine were relatively unaffected.  相似文献   

9.
The effect of protein labeling agents on coenzyme A (CoA) transport into isolated rat heart mitochondria was studied. CoA transport was substantially inhibited by sulfhydryl reagents (mersalyl, pCMB) as well as by the tyrosine-selective reagent N-acetylimidazole. The effect of pCMB was reversed by DTT. Moreover, CoA uptake was completely abolished by agents selective for lysine and amino terminal residues (pyridoxal 5-phosphate, dansyl chloride). In contrast arginine-selective reagents (2, 3-butanedione, phenylglyoxal) caused considerably less inhibiton of CoA uptake. Moreover, partial inhibition of transport was observed with the stilbene disulfonic acid derivatives DIDS and SITS. Finally, measurement of the effects of the labeling agents on the mitochondrial membrane potential indicated that the inhibition of CoA transport into mitochondria is not a secondary effect that arises from an alteration in the electric potential gradient across the inner mitochondrial membrane. These results provide the first information on the types of amino acid residues that may be essential to the CoA transport mechanism and provide additional support for the existence of a CoA transport protein within the mitochondrial inner membrane. Furthermore, the identification of effective inhibitors of the CoA transport system will greatly facilitate the functional reconstitution of this transporter in a proteoliposomal system following its solubilization and purification.  相似文献   

10.
The human erythrocyte anion exchange protein, Band 3, was reacted with N-ethylmaleimide (NEM) in cells to a stoichiometry of 5.3 mol NEM per mol Band 3, indicating that all NEM-reactive cysteines in Band 3 were labeled. Quantitatively NEM-blocked Band 3 was still able to bind to and be eluted by reducing agents from a mercurial affinity resin, [p-(chloromercuribenzamido)ethylene]amino-Sepharose. Reaction of NEM-blocked Band 3 with p-chloromercuribenzoate (pCMB) did not prevent binding to the resin due to exchange of pCMB for the immobilized mercurial. pCMB has been reported to inhibit water and urea permeation across the red cell membrane, and this has been attributed to reaction with a NEM-reactive sulfhydryl in Band 3. The interaction of Band 3 with the immobilized ligand directly demonstrates the reaction of NEM-blocked Band 3 with a mercurial and indicates that the NEM-unreactive, pCMB-reactive sulfhydryl residue is accessible to within approximately equal to 12 A (the distance from the solid support to the Hg) of the surface of the solubilized Band 3 protein.  相似文献   

11.
Summary The uptake of deoxyguanosine by rat liver mitochondria was characterized. The process required an intact mitochondrial membrane and exhibited a dependence on added phosphate. Deoxyguanosine uptake was minimally influenced by Mg2+ or Mn2+, but Ca2+ at concentrations above 0.5 mM were detrimental. Of the deoxynucleosides tested, only deoxyinosine inhibited the uptake of deoxyguanosine. The ribonucleoside guanosine was not observed to compete with its deoxynucleoside analog. Known inhibitors of nucleoside transport, cytochalasin B and NBMPR, did not block deoxyguanosine uptake, but the sulfhydryl reagents NEM and pCMB were both inhibitory. The uptake of deoxyguanosine was shown to be a saturable process and an apparent Km of 0.64 M was calculated from a Hanes plot.  相似文献   

12.
Amino acid transport was studied in three neuroblastoma clones, N-TD6, which synthesizes norepinephrine, N-T16, which synthesizes small amounts of serotonin, and N-S20Y, which synthesizes acetylcholine. All three clones exhibited high-affinity saturable transport systems for tyrosine, phenylalanine, tryptophan and glycine as well as systems unsaturated at amino acid concentrations of 1 mM in the external medium. Tyrosine, phenylalanine and tryptophan enter all three clones by rapidly exchanging transport systems which appear to be relatively insensitive to lowered external [Na+] or to the presence of 2,4-dinitrophenol (DNP). Glycine uptake was slower and was much more sensitive to lowered external [Na+] and to the presence of DNP in the medium. Glycine transport in N-T16 cells was decreased more markedly at low temperature than was transport of the three aromatic amino acids. Km and Vmax values found for saturable transport of tyrosine, phenylalanine and tryptophan were sufficiently low to suggest that, if similar amino acid transport systems exist in neuronal membranes, and if amino acid levels in brain extracellular fluid are similar to levels in plasma, such systems may serve, in conjunction with transport systems in cerebral capillaries, to limit the entry of amino acids into brain cells when blood amino levels are near the normal physiological range.  相似文献   

13.
Since hexoses readily diffuse from maize scutellum cells, it should be possible to detect them if they are produced during sucrose transport at the tonoplast or the plasmalemma. To test this idea, scutellum slices were placed in dinitrophenol (DNP) (which inhibits hexose utilization while greatly increasing utilization of vacuolar sucrose), and the utilization, uptake and leakage of sugars were measured. Only negligible amounts of hexose appeared in the DNP solution during a 5-hr incubation during which the slices metabolized 72μmol of sucrose. Glucose and fructose, added at a concentration of 2 mM, were taken up by the slices at rates 33% and 14% (respectively) of the rate of vacuolar sucrose utilization. It is suggested, therefore, that sucrose transport at the tonoplast does not release free hexose into the cytoplasm. Sucrose transport at the plasmalemma was studied using DNP- and mannose-treated slices. During incubation of these slices in sucrose, the disappearance of sucrose resulted in the appearance of significant quantities of glucose and fructose in the bathing solution. Evidence is presented that sucrose is split into glucose and fructose during transport across the plasmalemma. It is concluded that free hexose is not normally a product of this splitting but is a result of an uncoupling in the transport system caused by the DNP or mannose treatments.  相似文献   

14.
The effect of cadmium (CdCl2) on galactose and phenylalanine uptake by rat everted intestinal rings has been studied. The rings were preincubated (15 min) and incubated (5 min) in the presence of Cd. Galactose uptake (from 0.5 mM to 10 mM) was inhibited by 0.5 mM Cd about 25%. Only the phlorizin-dependent galactose transport was affected by cadmium, being a non-competitive type inhibition. A 15 min washing with saline solution significantly reduced the cadmium induced inhibition, which was practically reversed by washing with 5 mM EDTA. The uptake of 0.5 mM phenylalanine was not affected by 0.5 mM Cd but it was depressed by 1 mM Cd. Such inhibition was exerted on the sodium-dependent phenylaline transport. Washing with 5 mM EDTA diminished only slightly the inhibition of the transport by cadmium. It is suggested that the inhibition of intestinal transport of galactose and phenylalanine by cadmium may be due to its reversible interaction with metal-binding ligands, possibly sulfhydryl groups, related to the luminal transport systems.  相似文献   

15.
The efficiency of hydroperoxides (tert-butyl hydroperoxide, hydrogen peroxide) and sulfhydryl reagents (iodoacetamide, p-chloromercuribenzene sulfonic acid) as glyceollin elicitors was examined in relation to sulfhydryl oxidation, or alteration, and to lipid peroxidation, in 3-d-old soybean hypocotyl/radicle, Glycine max. These oxidative events were investigated as possible early steps in the transduction mechanisms leading to phytoalexin synthesis. Free protein sulfhydryl groups were not modified after any of the eliciting treatments, thus indicating that immediate massive protein oxidation or modification cannot be considered a signal transduction step. Unlike sulfhydryl reagents, which led to a decrease of the free nonprotein sulfhydryl group (free np-SH) pool under all of the eliciting conditions, the results obtained with hydroperoxides indicated that immediate oxidation of the np-SH is not required for the signal transduction. Moreover, elicitation with 10 mM tertbutyl hydroperoxide did not lead to further oxidation or to changes in np-SH level during the critical phase of phenylalanine ammonialyase activation (the first 20 h), suggesting that np-SH modifications are probably not involved in hydroperoxide-induced elicitation. On the other hand, all treatments leading to significant glyceollin accumulation were able to trigger a rapid (within 2 h) lipid peroxidation process, whereas noneliciting treatments did not. In addition, transition metals, such as Fe2+ and Cu+, were shown to stimulate both hydrogen peroxide-induced lipid peroxidation and glyceollin accumulation, again emphasizing that the two processes are at least closely linked in soybean. Among the oxidative processes triggered by activated oxygen species, oxidation of sulfhydryl compounds, or lipid peroxidation, our results suggest that lipid peroxidation is sufficient to initiate glyceollin accumulation in soybean. This further supports the hypothesis that lipid peroxidation could be involved as a step in the signal cascade that leads to induction of plant defenses.  相似文献   

16.
2,4-dinitrophenol (DNP) compromises ATP production within the cell by disrupting the mitochondrial electron transport chain. The resulting loss of ATP leads to an increase in glucose uptake for anaerobic generation of ATP. In L6 skeletal muscle cells, DNP increases the rate of glucose uptake by twofold. We previously showed that DNP increases cell surface levels of glucose transporter 4 (GLUT4) and hexose uptake via a Ca2+-sensitive and conventional protein kinase C (cPKC)-dependent mechanism. Recently, 5' AMP-activated protein kinase (AMPK) has been proposed to mediate the stimulation of glucose uptake by energy stressors such as exercise and hypoxia. Changes in Ca2+ and cPKC have also been invoked in the stimulation of glucose uptake by exercise and hypoxia. Here we examine whether changes in cytosolic Ca2+ or cPKC lead to activation of AMPK. We show that treatment of L6 cells with DNP (0.5 mM) or hyperosmolar stress (mannitol, 0.6 M) increased AMPK activity by 3.5-fold. AMPK activation peaked by 10-15 min prior to maximal stimulation of glucose uptake. Intracellular Ca2+ chelation and cPKC inhibition prior to treatment with DNP and hyperosmolarity significantly reduced cell surface GLUT4 levels and hexose uptake but had no effect on AMPK activation. These results illustrate a break in the relationship between AMPK activation and glucose uptake in skeletal muscle cells. Activation of AMPK does not suffice to stimulate glucose uptake in response to DNP and hyperosmolarity.  相似文献   

17.
The effect of p-chloromercuribenzoic acid (pCMB), either alone or in the presence of 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), on the 1 mM galactose absorption by in vivo perfused rat intestine has been studied. At 0.25 mM concentration, pCMB inhibits galactose absorption in about 32% but it does not modify the absorption of this sugar when the transport is blocked by 0.5 mM phlorizin, or that of the non-transportable monosaccharide derivative 2-deoxy-D-glucose. This shows that only the active transport component of galactose absorption is inhibited. A 2 min preexposure period is required for the inhibition to appear. The inhibition was not reversed by washing with saline solution even when it contained 0.5 mM dithioerythritol, 10 mM cysteine or 5 and 10 mM EDTA. The simultaneous exposure to 0.25 pCMB and 0.25 mM DTNB inhibits the total galactose entry in about 50%, an effect higher than the one exerted by each reagent separately and close to the one obtained with 0.5 mM phlorizin. Our results, in vivo, confirm the importance of the thiol groups in the cotransport of Na+ and sugar. As DTNB is an SH-reagent of lesser liposolubility than pCMB, the existence of two populations of sulfhydryl groups related to sugar transport which differ in their location within the brushborder membrane and in accessibility from the intestinal lumen, is suggested.  相似文献   

18.
The Effect of 2,4-Dinitrophenol on Translocation in the Phloem   总被引:1,自引:0,他引:1  
The effect of 2,4-dinitrophenol (DNP) on sucrose-14C transport in Soya seedlings has been analysed. The aim was to distinguish between an effect of the inhibitor on sugar movement within the phloem sieve tubes themselves, and on the prior steps of uptake and secretion of sugar into the conducting cells. DNP drastically inhibited sucrose-14C transport if it was applied to the 14C-treated leaf immediately before, or during, 14C supply. Transport was also strongly inhibited if DNP was applied along the translocation path while the 14C-treated leaflet was still in position on the plant. When, bowever, DNP was applied through the cut petioles of the primary leaves after removal of the 14C-treated terminal leaflet of the first trifoliate leaf, no inbibition was observed. On the contrary, transport appeared to have been promoted: significantly more 14C disappeared from the upper regions of DNP-treated plants as compared with controls, while in the lower plant parts more 14C accumulated. Different rates of synthesis of sucrose-14C into non-alcohol-soluble compounds could not account for this result. A similar stimulatory effect was observed when DNP was applied to the cut petiole of a primary leaf opposite that treated with 14C. Several indications were obtained that 14C which has reached the lower parts of the plant may circulate upwards again through the phloem within about 15 minutes. When sucrose-14C was introduced into the roots via the xylem, both DNP treatment and prior steam girdling resulted in the apparent accumulation of 14C in the lower plant parts. the results would be compatible with DNP inhibition of upwards movement in the phloem. DNP might also have affected sugar uptake processes in cells neighbouring the translocation path. It is concluded that the inhibitory effect of DNP on downwards phloem transport reported by earlier workers was probably due to an effect on uptake and/or secretion into the sieve tubes, not to an effect on the conducting cells themselves. Modern theories for phloem transport are discussed in the light of these findings.  相似文献   

19.
Study of the uncoupling effect of various saturated fatty acids (from caprylic to palmitic) revealed that the glutamate recoupling effect was more pronounced in the case of short chain fatty acids, whereas recoupling of mitochondria by carboxyatractylate was more effective in the case of long chain fatty acids. The overall recoupling effect, however, did not depend on the fatty acid chain length. Besides carboxyatractylate, glutamate and aspartate also exhibited a recoupling effect under uncoupling by lauryl sulfate. The uncoupling effect of lauryl sulfate was markedly weaker in the presence of DNP or laurate (but not FCCP) which were added in concentrations causing twofold increase in mitochondrial respiration. In the presence of lauryl sulfate the uncoupling action of laurate and DNP was insensitive to carboxyatractylate and glutamate. With laurate and DNP as uncouplers increasing the pH from 7.0 to 7.8 potentiated the recoupling effect of carboxyatractylate and attenuated the recoupling effect of glutamate. In the case of uncoupling by lauryl sulfate similar changes in the recoupling effect of carboxyatractylate and glutamate were observed only in the presence of 10 microM tetraphenylphosphonium. Thus, when uncoupling is induced by fatty acids, DNP, and lauryl sulfate, the ADP/ATP and aspartate/glutamate antiporters function as two parallel and independent pathways for mitochondrial membrane potential dissipation. We suggest that the role of the ADP/ATP antiporter in uncoupling includes proton capture from the intermembrane space with subsequent protonation of uncoupler anions, their transport as neutral molecules on the internal side, and deprotonation followed by proton release into the matrix and transfer of the uncoupler anion in the reverse direction. During uncoupling the aspartate/glutamate antiporter cyclically carries the uncoupler anion with simultaneous proton transfer from the intermembrane space into the matrix.  相似文献   

20.
Ethanol stimulated the uptake of l-alanine into isolated membrane vesicles of a marine pseudomonad at a rate and to an extent comparable with that obtained with reduced nicotinamide adenine dinucleotide (NADH) or the artificial electron donor ascorbate-N, N, N', N'-tetramethyl-p-phenylenediamine (ascorbate-TMPD). Methanol and branched-chain alcohols had little or no capacity to energize transport. No quantitative relationship was found between the ability of a compound to induce oxygen uptake and to energize transport, since with ethanol initial rates of oxygen uptake were approximately 4% of that obtained with NADH or ascorbate-TMPD. Cytochrome analysis revealed that NADH and ethanol reduced cytochromes b and c, whereas ascorbate-TMPD coupled primarily at the level of cytochrome c. Approximately 25% of the cytochromes reduced by dithionite were reducible by ethanol. Ethanol reduction of both cytochromes b and c was prevented by 2-heptyl-4-hydroxyquinoline-N-oxide, p-chloromercuribenzoate, N-ethylmaleimide, and iodoacetate. The ethanol- and NADH-energized transport systems for l-alanine were subject to quantitatively similar inhibition by cyanide, 2-heptyl-4-hydroxyquinoline-N-oxide, 2, 4-dinitrophenol, and the sulfhydryl reagents p-chloromercuribenzoate, N-ethylmaleimide, and iodoacetate. In contrast, for ascorbate-TMPD-driven transport, only cyanide and 2, 4-dinitrophenol remained fully effective as inhibitors, p-chloromercuribenzoate was only half as effective, and the other compounds stimulated transport. Inhibition of ethanol oxidation strikingly paralleled the inhibition of ethanol-driven transport for each of the inhibitors, including 2, 4-dinitrophenol. Marked differences between inhibition of oxygen uptake and inhibition of transport were observed when NADH or ascorbate-TMPD were the electron donors. The data indicate that only a small proportion of the respiratory chain complexes in the membrane vesicles are involved in transport and these are efficiently coupled to ethanol oxidation. The results also suggest that when 2, 4-dinitrophenol inhibits transport it is not acting as an uncoupling agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号