首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
To determine whether the pathogenic Lyme disease spirochete Borrelia spielmanii is adapted exclusively to garden dormice, we compared the reservoir competence of various rodent species for this spirochete, including sympatric and peridomestic rodents. The different kinds of rodents varied in their attractiveness to nymphal ticks and their level of susceptibility to tick-borne B. spielmanii infection, but only the edible dormouse appeared to be refractory. Although hazel dormice and Norway rats became infectious to ticks somewhat later than did garden dormice, they remained infectious for a longer period of time. During the course of a tick season, garden and hazel dormice contributed theoretically more than twice as many B. spielmanii-infected ticks than the somewhat less susceptible Norway rats and wood or yellow-necked mice. Hazel dormice appeared to be extraordinarily competent as reservoir hosts for B. spielmanii. Because peridomestic rodents proved to be reservoir competent, urban foci of transmission of B. spielmanii may affect the health of townspeople.  相似文献   

2.
To determine whether the pathogenic variant of Lyme disease spirochetes, isolate A14S, is perpetuated in a particular reservoir-vector relationship, we screened vector ticks in various Central European sites for a related spirochete and determined its host association. A14S-like spirochetes infect numerous questing ticks in the Petite Camargue Alsacienne (PC). They frequently infect dormice, but no mice or voles. Garden dormice appear to be better reservoir hosts for A14S-like spirochetes than for Borrelia afzelii, because these spirochetes are retained longer and infect ticks more readily. Spirochetes associated with garden dormice in the PC site form a homologous entity with those isolated from a human patient in The Netherlands. Its unique biological relationship together with previous genetic characterization justifies designating this dormouse-associated genospecies as a distinct entity. Garden dormice serve as the main reservoir hosts of a novel genospecies, Borrelia spielmani sp. nov., one of several that cause Lyme disease in people.  相似文献   

3.
To determine whether the pathogenic variant of Lyme disease spirochetes, isolate A14S, is perpetuated in a particular reservoir-vector relationship, we screened vector ticks in various Central European sites for a related spirochete and determined its host association. A14S-like spirochetes infect numerous questing ticks in the Petite Camargue Alsacienne (PC). They frequently infect dormice, but no mice or voles. Garden dormice appear to be better reservoir hosts for A14S-like spirochetes than for Borrelia afzelii, because these spirochetes are retained longer and infect ticks more readily. Spirochetes associated with garden dormice in the PC site form a homologous entity with those isolated from a human patient in The Netherlands. Its unique biological relationship together with previous genetic characterization justifies designating this dormouse-associated genospecies as a distinct entity. Garden dormice serve as the main reservoir hosts of a novel genospecies, Borrelia spielmani sp. nov., one of several that cause Lyme disease in people.  相似文献   

4.
Transmission of the etiologic agent of Lyme disease, Borrelia burgdorferi, occurs by the attachment and blood feeding of Ixodes species ticks on mammalian hosts. In nature, this zoonotic bacterial pathogen may use a variety of reservoir hosts, but the white-footed mouse (Peromyscus leucopus) is the primary reservoir for larval and nymphal ticks in North America. Humans are incidental hosts most frequently infected with B. burgdorferi by the bite of ticks in the nymphal stage. B. burgdorferi adapts to its hosts throughout the enzootic cycle, so the ability to explore the functions of these spirochetes and their effects on mammalian hosts requires the use of tick feeding. In addition, the technique of xenodiagnosis (using the natural vector for detection and recovery of an infectious agent) has been useful in studies of cryptic infection. In order to obtain nymphal ticks that harbor B. burgdorferi, ticks are fed live spirochetes in culture through capillary tubes. Two animal models, mice and nonhuman primates, are most commonly used for Lyme disease studies involving tick feeding. We demonstrate the methods by which these ticks can be fed upon, and recovered from animals for either infection or xenodiagnosis.  相似文献   

5.
The distribution of vector meals in the host community is an important element of understanding and predicting vector-borne disease risk. Lizards (such as the western fence lizard; Sceloporus occidentalis) play a unique role in Lyme disease ecology in the far-western United States. Lizards rather than mammals serve as the blood meal hosts for a large fraction of larval and nymphal western black-legged ticks (Ixodes pacificus--the vector for Lyme disease in that region) but are not competent reservoirs for the pathogen, Borrelia burgdorferi. Prior studies have suggested that the net effect of lizards is to reduce risk of human exposure to Lyme disease, a hypothesis that we tested experimentally. Following experimental removal of lizards, we documented incomplete host switching by larval ticks (5.19%) from lizards to other hosts. Larval tick burdens increased on woodrats, a competent reservoir, but not on deer mice, a less competent pathogen reservoir. However, most larvae failed to find an alternate host. This resulted in significantly lower densities of nymphal ticks the following year. Unexpectedly, the removal of reservoir-incompetent lizards did not cause an increase in nymphal tick infection prevalence. The net result of lizard removal was a decrease in the density of infected nymphal ticks, and therefore a decreased risk to humans of Lyme disease. Our results indicate that an incompetent reservoir for a pathogen may, in fact, increase disease risk through the maintenance of higher vector density and therefore, higher density of infected vectors.  相似文献   

6.
We examined the role of lizards in the ecology of Lyme disease in New York and Maryland. We collected data on vector tick infestations, measured lizard "realized" reservoir competence for the Lyme disease spirochete Borrelia burgdorferi, and estimated lizard population density. These data were incorporated into a model that predicts a host's ability to influence the prevalence of B. burgdorferi in the tick population, a primary risk factor in the epidemiology of Lyme disease. Published data on other northeastern hosts were included in the model to provide a reference for interpreting the importance of lizards as hosts. The model results indicate that 5-lined skinks (Eumeces fasciatus) are dilution hosts, capable of reducing infection prevalence in the tick population by 10.7-51.5 percentage points, whereas eastern fence lizards (Sceloporus undulatus) are not dilution hosts in the areas studied. Owing to moderate burdens of larval ticks, relatively high population densities, and reservoir incompetence, E. fasciatus may play an important role in the ecology of Lyme disease by reducing vector infection prevalence and associated human risk of infection.  相似文献   

7.
In Europe, dormice serve as competent reservoir hosts for particular genospecies of the tick-borne agent of Lyme disease (LD) and seem to support them more efficiently than do mice or voles. The longevity of edible dormice (Glis glis) and their attractiveness for ticks may result in a predominance of LD spirochetes in ticks questing in dormouse habitats. To investigate the role of edible dormice in the transmission cycle of LD spirochetes, we sampled skin tissue from the ear pinnae of dormice inhabiting five different study sites in south western Germany. Of 501 edible dormice, 12.6% harbored DNA of LD spirochetes. Edible dormice were infected most frequently with the pathogenic LD spirochete Borrelia afzelii. The DNA of B. garinii and B. bavariensis was detected in ca. 0.5% of the examined individuals. No spirochetal DNA was detectable in the skin of edible dormice until July, 6 weeks after they generally start to emerge from their obligate hibernation. Thereafter, the prevalence of spirochetal DNA in edible dormice increased during the remaining period of their 4 to 5 months of activity, reaching nearly 40% in September. Males were more than four times more likely to harbor LD spirochetes than females, and yearlings were almost twice more likely to be infected than adults. The seasonality of the prevalence of LD spirochetes in edible dormice was pronounced and may affect their role as a reservoir host in respect to other hosts.  相似文献   

8.
In endemic regions, Peromyscus leucopus, the mouse reservoir of the Lyme disease spirochete (Borrelia burgdorferi) and the piroplasm causing human babesiosis (Babesia microti), is nearly universally infected with both agents. Paradoxically, spirochetal infection is nearly twice as prevalent as is babesial infection in populations of field-collected nymphal Ixodes dammini, the tick vector. In the laboratory, a similarly disproportionate rate of infection was observed among nymphal ticks, feeding as larvae, on either B. burgdorferi- or B. microti-infected mice. Ticks which fed on mice with concurrent spirochetal and babesial infections also exhibited twice the incidence of spirochetal infection over that of the piroplasm. These data suggest that the efficiency of acquisition and transstadial passage of B. burgdorferi and B. microti infection differ by a factor of two. This discrepancy may explain differences observed both in the prevalence of infection in ticks collected in the field, as well as the apparently greater risk of spirochetal infection to humans in endemic areas.  相似文献   

9.
Ixodes dammini, the vector of Lyme disease and babesiosis, is distributed in various locations in the northeastern quadrant of the United States and nearby Canada. The life cycle of this tick, which includes larval, nymphal, and adult stages, spans at least two years. The tick over-winters between larval and nymphal feeding. Horizontal transmission of pathogens is facilitated by a feeding pattern in which both the larval and nymphal stages feed on the white-footed mouse, Peromyscus leucopus, and by a seasonal pattern of activity in which nymphs precede larvae. The species range appears to have expanded from a single island location, and has invaded new sites since the 1940s, some as recently as 1980. This increased abundance appears to be related to the increased abundance of deer, the preferred host of the adult stage. I. muris predominated in coastal Massachusetts before I. dammini became abundant, but is probably now extinct. I. scapularis, which is present in the southern U.S., is a poor vector of mouse parasites because about 90 percent of these immature ticks feed on lizards. To the extent that horizontal transmission occurs, we suggest that mice serve as the principal reservoir for the Lyme spirochete as well as Babesia microti.  相似文献   

10.
The efficacy of the mitochondrially encoded cytochrome b gene as a molecular marker for the discrimination of the reservoir host species of the Lyme borreliosis spirochete, Borrelia burgdorferi sensu lato (s.l.), in its European vector Ixodes ricinus (Acari: Ixodidae) was determined. Degenerate PCR primers were designed which amplified orthologous regions of the cytochrome b gene in several animal species which act as B. burgdorferi s.l. reservoirs and hosts for I. ricinus. PCR products were amplified and characterized by hybridization and restriction fragment length polymorphism analysis. Restriction fragment length polymorphism analysis of a 638-bp PCR product with HaeIII and DdeI revealed unique restriction fragment profiles, which allowed the taxonomic identification of animals to the genus level. A system was devised for the detection of the larval host blood meal from the remnants in unfed nymphal I. ricinus ticks by nested PCR amplification. An inverse correlation was demonstrated between amplicon size and successful PCR amplification of host DNA from the nymphal stage of the tick. The stability of the cytochrome b product as a marker for the identification of the larval host species in the nymphal instar was demonstrated up to 200 days after larval ingestion (approximately 165 days after molting) by reverse line blotting with a host-specific probe. This assay has the potential for the determination of the reservoir hosts of B. burgdorferi s.l. by using extracts from the same individual ticks for both the identification of the host species and the detection of the Lyme borreliosis spirochete.  相似文献   

11.
With the incidence of Lyme disease increasing throughout the United States, reducing risk of exposure to the disease is of the utmost concern. In the northeastern U.S., the blacklegged tick, Ixodes scapularis, is the primary vector and the white-footed mouse, (Peromyscus leucopus), the primary reservoir for Borrelia burgdorteri, the bacterium causing Lyme disease. Targeting I. scapularis engorging on white-footed mice with an effective biological control agent, such as the fungus Metarhizium anisopliae, could be an effective and relatively safe control technique. In 2002-2003, we performed laboratory and field experiments to determine whether M anisopliae-treated nesting material could effectively control larval I. scapularis ticks engorging on white-footed mice, and therefore reduce the number of infected nymphal I. scapularis questing the following summer. Our laboratory experiment demonstrated a strong negative effect of M. anisopliae-treated nesting material on survival of I. scapularis larvae feeding on P. leucopus, with 75% versus 35% larval mortality in treatment versus control nests. Our field trials caused only modest, localized reductions in nymphal abundance and had no effect on the proportion of nymphal I. scapularis infected with B. burgdorferi. Field results probably could be improved by increasing the density of nestboxes to allow fungal delivery to a higher proportion of the mouse population and by deploying nestboxes in an area with lower mammalian diversity, such as a suburban landscape.  相似文献   

12.
Ectoparasites such as ixodid ticks that remain attached to hosts for several days while feeding on blood are able to overcome the inflammatory and immune responses of some hosts and not others. The immature stages of the deer tick Ixodes dammini are found more frequently on the white-footed mouse, Peromyscus leucopus, than on other rodents. We propose that P. leucopus is more tolerant to I. dammini than is a less common host, the meadow vole, Microtus pennsylvanicus. To test this hypothesis, the distribution patterns and engorgement indices were determined for larval and nymphal I. dammini collected from wild-caught P. leucopus and M. pennsylvanicus. There were more immature ticks, which were more fully engorged, on P. leucopus than on M. pennsylvanicus. There were more and better engorged ticks on male than on female hosts. Laboratory studies on the number and weights of larval I. dammini collected off naive and previously exposed P. leucopus and M. pennsylvanicus support the results of the field study. Fewer larval ticks were recovered from previously exposed M. pennsylvanicus than P. leucopus, and the ticks weighed less. Larval and nymphal ticks aggregated among hosts in the study grid, and higher densities per male P. leucopus were correlated with higher engorgement indices, suggesting that immature I. dammini feed better at higher densities. The feeding success of I. dammini on its preferred host species might be due to its adaptation to the immune and inflammatory reactions of the host.  相似文献   

13.
To better understand vector‐borne disease dynamics, knowledge of the ecological interactions between animal hosts, vectors, and pathogens is needed. The effects of hosts on disease hazard depends on their role in driving vector abundance and their ability to transmit pathogens. Theoretically, a host that cannot transmit a pathogen could dilute pathogen prevalence but increase disease hazard if it increases vector population size. In the case of Lyme disease, caused by Borrelia burgdorferi s.l. and vectored by Ixodid ticks, deer may have dual opposing effects on vectors and pathogen: deer drive tick population densities but do not transmit B. burgdorferi s.l. and could thus decrease or increase disease hazard. We aimed to test for the role of deer in shaping Lyme disease hazard by using a wide range of deer densities while taking transmission host abundance into account. We predicted that deer increase nymphal tick abundance while reducing pathogen prevalence. The resulting impact of deer on disease hazard will depend on the relative strengths of these opposing effects. We conducted a cross‐sectional survey across 24 woodlands in Scotland between 2017 and 2019, estimating host (deer, rodents) abundance, questing Ixodes ricinus nymph density, and B. burgdorferi s.l. prevalence at each site. As predicted, deer density was positively associated with nymph density and negatively with nymphal infection prevalence. Overall, these two opposite effects canceled each other out: Lyme disease hazard did not vary with increasing deer density. This demonstrates that, across a wide range of deer and rodent densities, the role of deer in amplifying tick densities cancels their effect of reducing pathogen prevalence. We demonstrate how noncompetent host density has little effect on disease hazard even though they reduce pathogen prevalence, because of their role in increasing vector populations. These results have implications for informing disease mitigation strategies, especially through host management.  相似文献   

14.
To determine whether short-tailed shrews (Blarina brevicauda) serve as reservoir hosts for the Lyme disease spirochete (Borrelia burgdorferi) and the agent of human babesiosis (Babesia microti), we examined nymphal ticks that had fed as larvae on shrews collected from 3 enzootic sites in coastal Massachusetts for evidence of infection by either or both of these agents. Xenodiagnosis indicated that 11 of 14 shrews were infected by B. burgdorferi. One of 3 piroplasm-infected shrews also infected ticks with B. microti. In a site where the piroplasm is endemic, 11 of 17 shrews showed patent parasitemias by thin blood smears. Of these, 4 had parasitemias exceeding 40%. Few immature ticks infested shrews, however, suggesting that B. brevicauda, although abundant in some endemic sites and serving as a competent reservoir, would contribute minimally to the population of infected nymphs.  相似文献   

15.
Lyme disease has recently begun to emerge as a significant threat to human health, both in Europe and the United States. Late sequellae, resembling those of neurosyphilis and multiple sclerosis, may occur many years after initial infection. Spontaneous abortion accompanies arthritis, carditis and neuritis as burdensome short-term sequellae. Thousands of new infections are recognized each year on each side of the Atlantic, although reporting may be incomplete. The disease was described in Europe nearly a century ago and named erythema chronicum migrans, but its etiology has only recently been defined. The name Lyme disease was coined to describe a particularly intense American focus of disease, but the term has gained wide acceptance on both continents. The identity of the American and European etiological agents involved has yet to be determined.In America, a deer-associated, often bird-transported tick transmits this mouse-reservoired spirochete. The European situation seems more complex because the vector tick feeds on a greater variety of vertebrates. The reservoir hosts of the spirochete have yet to be determined. The role ofIxodes ricinus and possible other vectors in perpetuating transmission of the European infection remains to be defined. WhetherI. ricinus as well asI. dammini merely serve as a bridge to the human population or are important for the maintenance of the feral cycle remains to be seen.The capacity of a tick to maintain transmission of Lyme disease spirochetes depends upon a complex set of properties, including competence as a host for the spirochete, a pattern of feeding that focuses on a particular reservoir favored by a pattern of tick activity, during each transmission season, in which nymphs feed before larvae. Transmission would be favored by an environment, such as that of islands, in which the variety of potential reservoir hosts is restricted. Hosts, for example reptiles, that might fail to support growth of the spirochete would serve to dilute effective transmission in nature.Similarly, the capacity of a vertebrate to maintain the infection requires long-term support of the spirochete in a tissue site accessible to vector ticks, tolerance of repeated feeding by vector ticks and a pattern of host activity that exposes the host to numerous bites.The intensity of infection depends upon a continuous pattern of transmission in which each generation is infected anew. The rate event in which the vector inherits infection would serve mainly to transport the spirochete to a new site, most effectively by migrating birds.Due to the dispersed nature of Lyme disease and its recent emergence as an important hazard to health, measures for prophylaxis have only recently been devised. Lyme disease can be treated with antibiotics. But the effectiveness of such therapy depends upon correct and prompt diagnosis; delayed treatment is less effective, presumably because the spirochete becomes sequestered in immune-privileged sites.The present review lays stress on selected papers focusing on the epidemiological aspects and the experimental approach to the newly emerged disease rather than reviewing the complex literature concerning Lyme disease.  相似文献   

16.
White-footed mice are important hosts for immature blacklegged ticks (Ixodes scapularis) and the most competent reservoir hosts for several tick-borne pathogens, including the agent of Lyme disease, in eastern North America. The distribution of larval ticks on individual mice tends to be highly heterogeneous, potentially resulting in few individual hosts causing the majority of host-to-tick transmission events. In this study, we created an artificial neural network (ANN) model using a 20 year data set from Millbrook, NY, to understand which attributes of mice or the environment predict high larval burden. Furthermore, we performed a sensitivity analysis to explore the importance of, and interactions between, the most influential attributes. Our analysis indicated that highest larval burden is predicted in warmer and drier than average years when host abundance is low, and that climatic conditions and host density are far more important in predicting larval burden than traits of individual mice, a finding that could have human health implications within the context of a warming climate. Practically, our results suggest that instead of basing tick-control treatments on particular attributes of hosts, treatments should be targeted based on climate factors. Additionally, our results highlight the importance of including variable interactions in models aiming to predict vector (tick) aggregation, and, most broadly, demonstrate the utility of ANNs in understanding aggregation of ticks and other vectors.  相似文献   

17.
To determine whether prior exposure to Nearctic Ixodes vector ticks protects native reservoir mice from tick-borne infection by Lyme disease spirochetes, we compared their infectivities for white-footed mice and laboratory mice that had been repeatedly infested by noninfected deer ticks. Nymphal ticks readily engorged on tick-exposed laboratory mice, but their feeding success on white-footed mice progressively declined. Tick-borne spirochetes readily infected previously tick-infested mice. Thus, prior infestation by Nearctic ticks does not protect sympatric reservoir mice or Palearctic laboratory mice from infection by sympatric tick-borne spirochetes.  相似文献   

18.
To determine whether the Lyme disease spirochete Borrelia lusitaniae is associated with lizards, we compared the prevalence and genospecies of spirochetes present in rodent- and lizard-associated ticks at a site where this spirochete frequently infects questing ticks. Whereas questing nymphal Ixodes ricinus ticks were infected mainly by Borrelia afzelii, one-half of the infected adult ticks harbored B. lusitaniae at our study site. Lyme disease spirochetes were more prevalent in sand lizards (Lacerta agilis) and common wall lizards (Podarcis muralis) than in small rodents. Although subadult ticks feeding on rodents acquired mainly B. afzelii, subadult ticks feeding on lizards became infected by B. lusitaniae. Genetic analysis confirmed that the spirochetes isolated from ticks feeding on lizards are members of the B. lusitaniae genospecies and resemble type strain PotiB2. At our central European study site, lizards, which were previously considered zooprophylactic for the agent of Lyme disease, appear to perpetuate B. lusitaniae.  相似文献   

19.
The phenology of tick emergence has important implications for the transmission of tick-borne pathogens. A long lag between the emergence of tick nymphs in spring and larvae in summer should increase transmission of persistent pathogens by allowing infected nymphs to inoculate the population of naive hosts that can subsequently transmit the pathogen to larvae to complete the transmission cycle. In contrast, greater synchrony between nymphs and larvae should facilitate transmission of pathogens that do not produce long-lasting infections in hosts. Here, we use 19 years of data on blacklegged ticks attached to small-mammal hosts to quantify the relationship between climate warming and tick phenology. Warmer years through May and August were associated with a nearly three-week advance in the phenology of nymphal and larval ticks relative to colder years, with little evidence of increased synchrony. Warmer Octobers were associated with fewer larvae feeding concurrently with nymphs during the following spring. Projected warming by the 2050s is expected to advance the timing of average nymph and larva activity by 8–11 and 10–14 days, respectively. If these trends continue, climate warming should maintain or increase transmission of persistent pathogens, while it might inhibit pathogens that do not produce long-lasting infections.  相似文献   

20.
Swei A  Ostfeld RS  Lane RS  Briggs CJ 《Oecologia》2011,166(1):91-100
Invasive species, including pathogens, can have important effects on local ecosystems, including indirect consequences on native species. This study focuses on the effects of an invasive plant pathogen on a vertebrate community and Ixodes pacificus, the vector of the Lyme disease pathogen (Borrelia burgdorferi) in California. Phytophthora ramorum, the causative agent of sudden oak death, is a non-native pathogen killing trees in California and Oregon. We conducted a multi-year study using a gradient of SOD-caused disturbance to assess the impact on the dusky-footed woodrat (Neotoma fuscipes) and the deer mouse (Peromyscus maniculatus), two reservoir hosts of B. burgdorferi, as well as the impact on the Columbian black-tailed deer (Odocoileus hemionus columbianus) and the western fence lizard (Sceloporus occidentalis), both of which are important hosts for I. pacificus but are not pathogen reservoirs. Abundances of P. maniculatus and S. occidentalis were positively correlated with greater SOD disturbance, whereas N. fuscipes abundance was negatively correlated. We did not find a change in space use by O. hemionus. Our data show that SOD has a positive impact on the density of nymphal ticks, which is expected to increase the risk of human exposure to Lyme disease all else being equal. A positive correlation between SOD disturbance and the density of nymphal ticks was expected given increased abundances of two important hosts: deer mice and western fence lizards. However, further research is needed to integrate the direct effects of SOD on ticks, for example via altered abiotic conditions with host-mediated indirect effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号