首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The relative contributions of the intra-and extravascular compartments of the extracellular fluid (ECF) to the control of osmoregulatory renal functions were examined in saltwater-acclimated Pekin ducks. Having established steady-state diuresis and salt gland secretion by continuous infusion of 1 ml·min-1 isotonic Krebs-Ringer-Bicarbonate (KRB) solution, 5% dextran-70 was added to the infusate for 30 min thereby confining volume expansion to the intravascular compartment. General volume expansion by isotonic KRB caused a drop in plasma osmolality by 23 mOsm·kg-1, due to NaCl elimination by the salt glands, and decreases in hematocrit (het) and radioimmunologically measured plasma levels of Arg8-vasotocin (AVT) and Val5-angiotensin II (ANG II), whereas immunoreactivity associated with atrial natriuretic factor (ir-ANF) was increased. Adding 5% dextran-70 to the infusate left plasma osmolality and electrolytes unchanged but was followed by a further decrease in hct and a 36% increase in the plasma colloidosmotic pressure (COP) facilitating fluid shifts from the extra-to the intravascular compartment of the ECF. Plasma levels of AVT and ANG II remained unchanged, but ir-ANF rose three-fold, its increase being three times as great relative to the decrease in hct, as during general volume expansion by isotonic KRB solution. Arterial and central venous pressure measurements did not indicate changes in cardiovascular function. Hyperoncotic infusion initially induced marked antidiuresis with decreased osmolal excretion, despite a slightly elevated urine osmolality. This effects, however, was trasient and not proportional to the rise in COP, but rather seemed to be related to fluid shifts resulting from hyperoncotic loading. With tracer dilution techniques, reductions in both renal plasma flow and glomerular filtration rate were found to contribute to antidiuresis which was associated with reduced fractional water excretion. Salt gland secretion rate did not increase during hyperoncotic intravascular volume expansion but rather tended to decrease. The results of this study are in line with the idea that contributions of the interstitial fluid compartment (IFC) to volume-dependent control of osmoregulatory functions have to be considered. In the present study on saltwater-acclimated ducks, AVT, ANG II, and ir-ANF could be excluded as mediators of the adjustments in renal water and salt handling following fluid shifts due to hyperoncotic intravascular volume expansion.Abbreviations ANF atrial natriuretic factor - ir-ANF ANF-like immunoreactivity - ANG II angiotensin II - AVT arginine vasotocin - BF breathing frequency - b. w. body weight - COP colloid osmotic pressure - CVP central venous pressure - ECF extracellular fluid - ERPF effective renal plasma flow - FF filtration fraction - GFR glomerular filtration rate - IFC interstitial fluid compartment - i.v. intravenous(ly) - hct hematocrit - HR heart rate - KRB Krebs-Ringer Bicarbonate solution - MABP mean arterial blood pressure - PAH paraaminohippuric acid - SEM standard error of mean  相似文献   

2.
The present study was designed to determine whether the responses of the avian kidney to circulating angiotensin II, under different osmotic conditions, involve an interaction with prostaglandins. The renal effects of i.v. infusions of angiotensin II at 10, 30 and 90 ng·kg·min-1 for 30 min were compared in Pekin ducks given maintenance infusions of either 200 mosmol ·l-1 NaCl or glucose at 0.5 ml·min-1, with and without prostaglandin inhibition by indomethacin. Birds infused with glucose without indomethacin responded to the two low doses of angiotensin II with dose-dependent reductions in water and sodium excretion, whilst the same doses of angiotensin II in salineloaded birds caused dose-dependent increases in the renal exeretion of salt and fluid. Indomethacin treatment in the animals given glucose had no effect upon the antidiuretic response to the low doses of angiotensin II but did prevent the antinatriuretic effect. In the birds infused with saline, prostaglandin inhibition reversed the natriuretic/diuretic action of angiotensin II, producing renal salt and water conservation. The highest dose of angiotensin II was consistently diuretic/natriuretic and independent of prostaglandin involvement in each case. The results indicate that the antinatriuretic effect of low doses of angiotensin II in glucose-infused birds involves an interaction with prostaglandins, whereas the antidiuretic effect of angiotensin II under this condition is independent of prostaglandins. In salt-loaded birds the diuretic/natriuretic actions of low doses of angiotensin II are mediated by prostaglandins so that inhibition of prostaglandin formation unmasks the normal salt and fluid-retaining actions of systemic angiotensin II.Abbreviations AII angiotensin II - ECFV extracellular fluid volume - PG prostaglandin - PGE prostaglandin E  相似文献   

3.
The effect of altering the volumes of different body fluid compartments on the renal response to atrial natriuretic peptide (ANP) was studied in anesthetized rats before and during administration of the peptide at 170 ng/min. Four different groups were used. In the first (De), reduction of total body water content was induced by 48 h water deprivation. In the second (De+NaCl), an acute intravenous infusion after the same 48 h dehydration was used to restore the extracellular, but not the intracellular, fluid compartment. In the third (Eu+NaCl), euvolemic rats were infused with isotonic saline at the same rate as in group De+NaCl to expand both intravascular and interstitial components of extracellular fluid. In the fourth group (Eu+BSA) an infusion of hyperoncotic (6%) bovine serum albumin in isotonic saline was used to expand the intravascular volume while contracting the interstitial volume. Excretion of water and salt was predictably reduced in the De group compared with the others. This reduction was associated with increased tubular reabsorption, both upstream from the medullary collecting duct and in the duct itself. Administration of ANP did not significantly affect diuresis and saluresis, or tubular transport. By contrast, there were marked and similar diuretic and natriuretic responses to ANP in groups De+NaCl and Eu+NaCl, associated with transport inhibition primarily in the medullary collecting duct. Surprisingly, the rats infused with hyperoncotic solution (Eu+NaCl) also failed to show marked excretory or duct transport responses to ANP. According to the study design, the two nonresponding groups had, respectively, a decreased or a normal intracellular compartment, and a decreased or increased plasma volume. The common feature of both nonresponding groups was a decreased interstitial fluid compartment, whereas the two responding groups had normal or increased interstitial volume. We suggest, therefore, that a replete interstitial fluid compartment is essential for the renal response to ANP.  相似文献   

4.
Plasma atrial natriuretic factor concentrations in Rhode Island red hens averaged 72.1±6.9 pg·ml-1, range 33.4–136.0 pg·ml-1. The intravenous infusion of isotonic saline containing 3% dextran for 2 h produced no significant changes in plasma osmotic or electrolyte concentrations; however, haematocrit changes indicated vascular expansions of 14.4% after 1 h and 21.3% after 2 h and plasma atrial natriuretic factor concentrations were elevated by 190% and 257%, respectively. The intravenous infusion of chicken atrial natriuretic factor at rates of 10, 25, 50 and 100 ng·kg-1·min-1 for 20 min produced levels of plasma atrial natriuretic factor that were directly related to the infusion rate and which, in birds undergoing a steady-state diuresis/natriuresis driven by the intravenous infusion of isotonic saline at 1 ml·min-1, produced dose-dependent increases of 19, 26, 38 and 55% in urine flow rate and of 8, 30, 49 and 77% in sodium excretion. Potassium excretion was significantly increased only at the two highest atrial natriuretic factor infusion rates. The observed correlation between plasma atrial natriuretic factor concentration and vascular volume together with the atrial natriuretic factor-induced modulation of renal salt and water elimination is consistent with the concept that in the chicken this peptide has a physiological role as a regulatory hormone in volume homeostasis.Abbreviations AII angiotensin II - ANF atrial natriuretic factor - AVT arginine vasotocin - BV blood volume - chANF chicken atrial natriuretic factor - CHE chicken heart extract - ECF extracellular fluid - EDTA ethylenediaminetetra-acetate - Hct haematocrit - i.v. intravenous - PCR plasma clearance rate - PRA plasma renin activity - RIA radioimmunoassay  相似文献   

5.
Summary Male Wistar-Kyoto rats were given either tap water (control) or 3%-alanine (taurine-depleted) for three weeks. To prepare for the kidney function studies, the animals were then implanted with femoral vessels and bladder catheters. Two days after surgery, each rat was given an intravenous infusion of saline at the rate of 50l/min and urine samples were collected at specific time intervals. An isotonic saline solution (0.9% NaCl) was infused for determination of baseline parameters and was followed by the infusion of a hypotonic saline solution (0.45% NaCl). Two days later, the infusion protocol was repeated in the same animals; however, a hypertonic saline solution (1.8% NaCl) was substituted for the hypotonic saline solution. Renal excretion of fluid and sodium increased in the control, but not taurine-depleted, rats during the hypotonic saline infusion. Interestingly, diuretic and natriuretic responses were similar between the groups during hypertonic saline infusion. The results suggest that taurine-depletion in rats affects renal excretory responses to a hypotonic, but not a hypertonic, saline solution.  相似文献   

6.
The effects of dehydration and hemorrhage on plasma ionic, osmotic, and antidiuretic hormone (arginine vasotocin) concentrations and of hemorrhage on salt gland secretion and glomerular filtration rate were evaluated in glaucous-winged gulls, Larus glaucescens. Dehydration for 24 h did not affect plasma ionic, osmotic or arginine vasotocin concentrations; 72 h dehydration significantly elevated plasma osmolality, plasma sodium and chloride concentrations, and plasma arginine vasotocin concentration, but did not affect plasma potassium concentration. Constant infusion of 0.8 mol·l-1 NaCl increased plasma arginine vasotocin concentration and produced salt gland secretion in seven gulls; four secreted well, while three secreted less well. Removal of 20% blood volume during saline infusion immediately reduced (P<0.001) salt gland secretion rate in all gulls. After bleeding, good secretors maintained glomerular filtration rate and urine flow rate; the poorer secretors increased glomerular filtration rate and became diuretic. Blood replacement returned salt gland secretion rate to the prebleeding level (P<0.05) without affecting salt gland secretions sodium concentration in gulls which secreted well, but did not restimulate salt gland secretion in gulls which secreted poorly. Reinfusion of blood had no effect on glomerular filtration rate. Bleeding and blood replacement did not affect plasma arginine vasotocin concentration.Abbreviations AVT arginine vasotocin - ECF extracellular fluid - ECFV extracellular fluid volume - EDTA ethylenediaminetetra-acetate - EWL evaporative water loss - GFR glomerular filtration rate - Hct hematocrit - LB large blood sample - [Na+]pl plasma sodium concentration - Osmpl plasma osmolality - PEG polyethylene glycol - RH relative humidity - RIA radioimmunoassay - SB small blood sample - SGS salt gland secretion - T a ambient temperature - TFA trifluoroacetic acid - UFR urine flow rate  相似文献   

7.
Summary Renal clearance methods were used to examine several factors which may be involved in control of urine flow in larvalAmbystoma tigrinum. Arginine vasotocin (10 ng/g) reduced both urine flow and GFR (–30%); this was reversed with mesotocin (5 ng/g). Adaptation to isosmotic media reduced GFR from 0.156 ml/10 g·h to 0.057. Neither hypophysectomy nor treatment with mesotocin altered this response. The adrenergic blocking agents propranolol and phentolamine did not reverse the antidiuresis in isosmotic medium-adapted larvac. Ten percent volume expansion with 50% and 100% Ringer's solution increased GFR in isosmotic medium-adapted animals. Hypophysectomy prevented this increase in GFR. Ten percent volume expansion with 200% Ringer's solution decreased GFR in tapwater adapted larvae; however, 20% volume expansion with 200% Ringer's increased GFR. Both volume and concentration of extracellular fluid appear to be important in control of GFR. Both arginine vasotocin and mesotocin may be involved in these responses, however other factors must also play a role.Abbreviations AVT arginine vasotocin - ECF extracellular fluid - GFR glomerular filtration rate - MT mesotocin  相似文献   

8.
In acute experiments on anaesthetized rats from three age groups (15-20, 25-30 days of postnatal life, adult ones), studies have been made on water basins of the organism after peroral injection of hypertonic (2.5-5%) solutions of NaCl (5 and 10 ml per 100 g of the body weight). It was demonstrated that during ontogenesis, total content of water decreases mainly at the expense of extracellular fluid. Infusion of saline solutions into the stomach of rats decreases fluid content in all water basins, especially in the interstitial one. The level of changes depends on the volume of the injected solution and, to a greater extent, on the concentration of the latter and the age of animals. The described response is due to osmotic transport of water into the alimentary tract, as suggested by the decrease of water content in this tract. The role of the digestive tract in osmotic and volume regulation during peroral salt loading is discussed.  相似文献   

9.
A mathematical model of body fluid volume and osmolality regulation was developed which incorporated the major nonlinearities of fluid assimilation, exchange, distribution and excretion. The non-linear differential equations define compartmental material balances for water, urea, sodium, protein and antidiuretic hormone (ADH). The parameters of these equations were calculated using analytical solutions and available steady-state experimental data. The model was used to simulate the renal response to five input forcings: (1) intraesophageal water infusion; (2) water ingestion; (3) intravenous ADH injection; (4) intravenous water infusion; and (5) intermittent water loading. The model yielded continuous simulation curves which agreed reasonably well with the available transient and steady-state experimental data. The model predicted that stimulating volume receptors via changes in left atrial pressure accounts for only 15–20% of changes in ADH secretion rate, whereas stimulation of the osmotic receptors via changes in plasma osmolality accounts for the remaining 80–85% of changes. Thus, it appears that regulation of ADH secretion is largely dependent upon plasma osmolality during forcings which do not appreciably alter the cardiovascular blood volume.  相似文献   

10.
Summary The effects of increased fluid volume in the closed vascular system on circulation were studied in the leech (Hirudo medicinalis) by intravascular pressure recordings and blood flow measurements.Significant increases in blood volume were achieved by crop loading with hyposmotic (72 mOsmol·kg–1 H2O) or hyperosmotic (300 mOsmol·kg–1 H2O) salt solutions or by infusion of isosmotic saline (200 mOsmol·kg–1) into the vascular system.During the high-pressure (HIP) phase, which maintains the rear-to-front circulation, systolic blood pressure in the heart was not affected. An increase in systolic pressure in the heart was observed during the low-pressure (LOP) phase, which supplies the segmental circulation. Heart rate was not changed by crop loading with hyposmotic saline or by vascular infusion. Heart rate decreased after crop loading with hyperosmotic saline. Blood flow rate in the dorsal vessel was increased by crop loading with hyposmotic saline, but not after crop loading with hyperosmotic saline. In all cases the diameter of the dorsal vessel was not affected. A possible mechanism controlling blood pressure and blood flow in the vascular system is discussed.Abbreviations HIP-phase high-pressure phase - LOP-phase low-pressure phase - CNS central nervous system  相似文献   

11.
Nectarivorous whitebellied sunbirds, Nectarinia talatala, demonstrate distinct circadian patterns in osmoregulatory parameters. We recorded intake of a 1 mol/l sucrose solution which enabled calculation of total water gain, and collected cloacal fluid for measurements of volume, osmolality and aldosterone concentration. These variables were assessed hourly over 12 h of photophase, and averaged over the 12-h scotophase period. Overnight, when sunbirds were in negative water balance, aldosterone concentrations and outputs were significantly higher than diurnal levels, reflecting a shut-down of cloacal fluid production. Early morning was marked by a high rate of osmotic excretion, disproportionate to water gain or cloacal fluid output, followed by steady intake and cloacal fluid output during the morning and early afternoon. Reduced water flux (decreased feeding and cloacal fluid output) during mid-afternoon was accompanied by a paradoxical decline in osmotic excretion, whilst a significant increase in the discrepancy between water intake and output was recorded as the birds effectively stored water before the scotophase. These patterns of intake and excretion may be informative in explaining drinking and foraging behaviour in the field.Abbreviations ALDO aldosterone - CF cloacal fluid - GFR glomerular filtration rate  相似文献   

12.
Experiments were performed to test the hypothesis that the renal interstitial hydrostatic pressure (RIHP) response to acute volume expansion is suppressed in diabetes mellitus. Sprague-Dawley rats received streptozotocin (STZ rats; 65 mg/kg ip) or vehicle (Sham rats). Two weeks later, RIHP and Na(+) excretion responses to acute graded volume expansion with isotonic saline were quantified under Inactin anesthesia (0.1 mg/kg ip). In Sham rats, acute graded volume expansion to 10% body wt produced increases in RIHP (Delta = 12.2 +/- 2.4 mmHg), urine flow (Delta = 54 +/- 8 microliter. min(-1). g(-1)), and Na(+) excretion (Delta = 11.5 +/- 1.9 mueq. min(-1). g(-1)). In STZ rats, these volume expansion-induced responses were significantly blunted (RIHP by 50%, urine flow by 81%, and Na(+) excretion by 76%). Renal decapsulation eliminated the differences between STZ and Sham rats with regard to volume expansion-induced increases in RIHP, urine flow, and Na(+) excretion. Renal denervation normalized the RIHP response to volume expansion and improved the diuretic and natriuretic responses in STZ rats. Moreover, diuretic and natriuretic responses to direct changes in RIHP (induced by renal interstitial volume expansion) were blunted in STZ rats. We conclude that diminished alterations in RIHP, as well as a reduced impact of RIHP on Na(+) excretion, contribute to the impaired diuretic and natriuretic responses to acute volume expansion during the early stage of diabetes.  相似文献   

13.
Summary Renal clearance studies were performed in European starlings (Sturnus vulgaris) in order to determine the extent of ureteral sodium excretion under control conditions and during an acute, hyperosmotic salt stress. These experiments also estimated the contribution of the lower intestine (colon and cloaca) to postrenal solute reabsorption by making both cloacal and ureteral urine collections in the same birds. A comparison of ureteral vs cloacal excretion rates found significantly higher sodium (9.09±1.30 vs 1.03±0.38 Eq·kg–1·min–1) and chloride (4.15±0.56 vs 1.00±0.38 Eq·kg–1·min–1) excretion rates during the ureteral collections. Fractional excretion of sodium was also significantly higher during ureteral collections, but this value did not exceed 1% of the filtered sodium load during either collection series. Urine flow rate was significantly higher during cloacal collections, suggesting osmotic back-flux of water across the cloacal wall. Infusion of a 1M NaCl solution resulted in rapid increases in glomerular filtration rate (GFR), urine flow rate, and urine osmolality. Fractional sodium and water reabsorption decreased by 11% and 4%, respectively. Glomerular counts and size distribution profiles, measured by in vivo alcian blue labelling, provided no evidence for a reduction in the number of filtering glomeruli during hyperosmotic saline loading. We conclude that renal sodium excretion rates for the starling are similar to those seen in other avian species and in mammals. These studies also provide direct evidence for postrenal modification of urine in this species, even under conditions of continuous flow. Acute hyperosmotic salt stress can, under some conditions, cause increased rather than decreased GFR, indicating multiple regulatory pathways. Finally, there was no evidence in these studies for glomerular shutdown in response to salt loading.  相似文献   

14.
Summary A homogeneous group of 8-week-old Pekin ducks was divided into two groups: saltwater (SW) ducks received salt water of gradually increasing salinity (200–600 mOsm·kg-1) from the 8th to 20th week of age; freshwater (FW) ducks were maintained on fresh water but otherwise treated identically. During the course of salt-adaptation SW ducks increased plasma osmolality, Na+ and Cl- levels, and concentrations of the osmoregulatory peptide hormones arginine vasotocin and angiotensin II. The apparent volume of inulin distribution decreased in SW ducks, but blood volume was not reduced. SW ducks also developed arterial hypotension, bradycardia, and reduced cardiac output in the course of salt adaptation. This depressed cardiovascular performance was associated with enhanced vagal restraint of cardiac function and reduced plasma concentrations of norepinephrine. Salt water adaptation did not alter the degrees to which mean arterial pressure and heart rate changed in response to intravenous bolus injections of catecholamines. The same applied to the osmoregulatory peptides which were, however, effective only at supraphysiological concentrations. The Pekin duck, as a bird predisposed for adaptation to high salt loads, presumably adapts to chronic hypertonic saline intake by resetting the central autonomic control of blood pressure to a lower level.Abbreviations FW ducks fresh water ducks - SW ducks salt water ducks - ANGI angiotensin II - AVT arginine vasotocin - MAP mean arterial pressure - HR heart rate - IV intravenous - CO cardiac output - SV stroke volume - TPR total peripheral resistance - ISp virtual inulin space - ECFV extracellular fluid volume  相似文献   

15.
The effect of aspirin administration and presumed blockade of prostaglandin synthesis on renal sodium excretion, plasma and extracellular fluid volumes, and blood pressure were examined in rats on a high sodium intake. After acute salt loading aspirin treated rats showed an impaired sodium excretion, while no changes in glomerular filtration rate were observed. In chronically loaded rats (7 weeks) administration of aspirin induced significant increases in both plasma and extracellular fluid volume, but no significant changes in blood pressure were found. The results are consistent with the hypothesis that prostaglandins mediate renal sodium excretion and therefore participate in extracellular fluid volume regulation.  相似文献   

16.
Summary In order to assess the contribution of transcellular water flow to isosmotic fluid transport acrossNecturus gallbladder epithelium, we have measured the water permeability of the epithelial cell membranes using a nuclear magnetic resonance method. Spin-lattice (T 1) relaxation of water protons in samples of gallbladder tissue where the extracellular fluid contained 10 to 20mm Mn2+ showed two exponential components. The fraction of the total water population responsible for the slower of the two was 24±2%. Both the size of the slow component, and the fact that it disappeared when the epithelial layer was removed from the tissue, suggest that it was due to water efflux from the epithelial cells. The rate constant of efflux was estimated to be 15.6±1.0 sec1 which would be consistent with a diffusive membrane water permeabilityP d of 1.6×103 cm sec1 and an osmotic permeabilityP os of between 0.3×104 and 1.4×104 cm sec1 osmolar1. Using these data and a modified version of the standing-gradient model, we have reassessed the adequacy of a fluid transport theory based purely on transcellular osmotic water flow. We find that the model accounts satisfactorily for near-isosmotic fluid transport by the unilateral gallbladder preparation, but a substantial serosal diffusion barrier has to be included in order to account for the transport of fluid against opposing osmotic gradients.  相似文献   

17.
The effect of aspirin administration and presumed blockade of prostaglandin synthesis on renal sodium excretion, plasma and extracellular fluid volumes, and blood pressure were examined in rats on a high sodium intake. After acute salt loading aspirin treated rats showed an impaired sodium excretion, while no changes in glomerular filtration rate were observed. In chronically loaded rats (7 weeks) administration of aspirin induced significant increases in both plasma and extracellular fluid volume, but no significant changes in blood pressure were found. The results are consistent with the hypothesis that prostaglandins mediate renal sodium excretion and therefore participate in extracellular fluid volume regulation.  相似文献   

18.
D Susic  J C Sparks 《Prostaglandins》1975,10(5):825-831
The effect of aspirin administration and presumed blockade of prostaglandin synthesis on renal sodium excretion, plasma and extracellular fluid volumes, and blood pressure were examined in rats on a high sodium intake. After acute salt loading aspirin treated rats showed an impaired sodium excretion, while no changes in glomerular filtration rate were observed. In chronically loaded rats (7 weeks) administration of aspirin induced significant increases in both plasma and extracellular fluid volume, but no significant changes in blood pressures were found. The results are consistent with the hypothesis that prostaglandins mediate renal sodium excretion and therefore participate in extracellular fluid volume regulation.  相似文献   

19.
Administration of aprotinin, a kallikrein inhibitor, to anesthetized rats infused with 0.9% saline solution to expand the extracellular fluid volume resulted in blunted natriuresis and diuresis. Urine flow declined from 27.1 +/- 2.6 to 8.0 +/- 0.9 microliter/min/100 g body wt while sodium and potassium excretion were reduced 63 and 45%, respectively (P less than 0.01). Mean blood pressure and glomerular filtration rate were not significantly altered by aprotinin. Acute or chronic pretreatment with DOCA, to enhance kinin synthesis, failed to modify the renal excretory response to aprotinin suggesting that saline loading alone was able to induce kinin generation fully in these rats. The results indicate that aprotinin enhanced the reabsorption of filtrate in rats expanded with isotonic saline and imply an influence of renal kinins on the tubular transport of salt and water.  相似文献   

20.
Previous investigations in normotensive animals have demonstrated a marked natriuretic and diuretic response following the acute administration of supraphysiologic doses of synthetic leptin. However, the importance of endogenous leptin in the regulation of renal sodium and water balance is not yet defined. This study examined the hemodynamic and renal excretory effects of circulating leptin blockade with a specific polyclonal antibody in groups of normotensive, chronically saline-loaded Sprague-Dawley rats. In the experimental group (n = 10), leptin antibody significantly decreased urinary sodium excretion and urinary flow by approximately 30% compared to the control rats (n = 10). Mean arterial pressure remained unchanged. Collectively, these results are interpreted to suggest that leptin is an important renal sodium-regulating factor under conditions of mild sodium and volume expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号