首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adenylate nucleotide concentrations, based on internal water space, were determined in cells of Arthrobacter crystallopoietes during growth and starvation and the energy charge of the cells was calculated. The energy charge of spherical cells rose during the first 10 h of growth, then remained nearly constant for as long as 20 h into the stationary phase. The energy charge of rod-shaped cells rose during the first 4 h of growth, then remained constant during subsequent growth and decreased in the stationary growth phase. Both spherical and rod-shaped cells excreted adenosine monophosphate but not adenosine triphosphate or adenosine diphosphate during starvation. The intracellular energy charge of spherical cells declined during the initial 10 h and then remained constant for 1 week of starvation at a value of 0.78. The intracellular energy charge of rod-shaped cells declined during the first 24 h of starvation, remained constant for the next 80 h, then decreased to a value of 0.73 after a total of 168 h starvation. Both cell forms remained more than 90% viable during this time. Addition of a carbon and energy source to starving cells resulted in an increase in the ATP concentration and as a result the energy charge increased to the same levels as found during growth.Nonstandard Abbreviations cGMP 3,5 guanosine monophosphate - ppGpp guanosine tetraphosphate - MS mineral salts - HC casein hydrolysate - TEA triethanolamine buffer - Pi inorganic phosphate  相似文献   

2.
3.
The Survival of Marine Bacteria under Starvation Conditions   总被引:2,自引:1,他引:1  
The survival under starvation conditions of two selected strains of marine bacteria, a yellow Pseudomonas sp. (strain 95A) and an unidentified oxidative peritrichate Gram negative rod (strain 41), was investigated. The 50% survival times of suspensions in phosphate buffer depended on cell density and were often more than 20 d. A capacity to scavenge atmospheric nitrogenous compounds led to a marked increase in the viability of cell suspensions of 104 cells/ml. Intracellular poly-β-hydroxybutyrate (PHB) prolonged the survival of strain 95A. Strain 41 contained more intracellular protein and this was degraded during starvation in ammonia-free air. Prolonged survival was not explicable in terms of low adenylate charge states. The 'maintenance energy'requirements of strains 95A and 41 in chemostat cultures were 0.042 and 0.04 g glucose/g dry wt/h respectively, compared with dilution-rate-dependent values of 0.051 to 0.856 for Escherichia coli. The low maintenance energy requirements would not alone explain the long viability. Thus no peculiar physiological property such as nitrogen-scavenging, ability to survive at the expense of intracellular PHB or protein, abnormally low cellular protein content, low maintenance energy requirements or a low adenylate charge state fully account for the starvation resistance of these marine bacteria.  相似文献   

4.
Three marine bacteria were examined for physiological and morphological changes in the initial phase of starvation. It was found that the starvation process was induced in a similar way irrespective of whether the cells were suspended in nutrient and energy free artificial seawater (NSS) or NSS supplemented with nitrogen and phosphorus. An initial phase of increased activity was consistent with a decreased response to added nutrients. Recovery from starvation exhibited the same response in both these starvation regimes, measured throughout the starvation period. Cells in nitrogen or phosphorus deprived starvation regimes, showed a high and rapid increased activity, followed by a delayed and more pronounced decline in respiratory activity. The initial phase of starvation also included a loss of poly--hydroybutyrate as observed by transmission electron microscopy (TEM). Two bacterial strains showed formation of small vesicles on the outer cell layer when examined by TEM. This formation and release of vesicles was related to the continuous size reduction during starvation survival. The results are discussed in terms of defining the mechanisms of initial cellular responses to nutrient deprivation.Abbreviation NSS nine salt solution  相似文献   

5.
The ATP pool of Streptococcus cremoris in a lactose-limited chemostat depletes rapidly when lactose is consumed. The decrease of the intracellular ATP concentration parallels the dissipation of the electrochemical proton gradient. The adenylate energy charge of growing cells is 0.8 but drops rapidly to 0.2 when the cells enter the starvation phase.One of the early events of lactose starvation is a rapid increase of the pools of phosphoenolpyruvate and inorganic phosphate. The accumulation of phosphoenolpyruvate is temporarily and levels off at a much lower value than in growing cells; the accumulation of phosphate is of a more permanent nature. Despite the low PEP concentration starved cells are, after 24 h of incubation in the absence of lactose, still able to take up lactose, to synthesize ATP and to generate quickly an electrochemical proton gradient.Abbreviations PEP phosphoenolpyruvate Dedicated to Prof. Dr. Gerhart Drews on the occasion of his 60th birthday  相似文献   

6.
Seven different strains of Saccharomyces cerevisiae were tested for the ability to maintain their fermentative capacity during 24 h of carbon or nitrogen starvation. Starvation was imposed by transferring cells, exponentially growing in anaerobic batch cultures, to a defined growth medium lacking either a carbon or a nitrogen source. After 24 h of starvation, fermentative capacity was determined by addition of glucose and measurement of the resulting ethanol production rate. The results showed that 24 h of nitrogen starvation reduced the fermentative capacity by 70 to 95%, depending on the strain. Carbon starvation, on the other hand, provoked an almost complete loss of fermentative capacity in all of the strains tested. The absence of ethanol production following carbon starvation occurred even though the cells possessed a substantial glucose transport capacity. In fact, similar uptake capacities were recorded irrespective of whether the cells had been subjected to carbon or nitrogen starvation. Instead, the loss of fermentative capacity observed in carbon-starved cells was almost surely a result of energy deprivation. Carbon starvation drastically reduced the ATP content of the cells to values well below 0.1 micro mol/g, while nitrogen-starved cells still contained approximately 6 micro mol/g after 24 h of treatment. Addition of a small amount of glucose (0.1 g/liter at a cell density of 1.0 g/liter) at the initiation of starvation or use of stationary-phase instead of log-phase cells enabled the cells to preserve their fermentative capacity also during carbon starvation. The prerequisites for successful adaptation to starvation conditions are probably gradual nutrient depletion and access to energy during the adaptation period.  相似文献   

7.
Seven different strains of Saccharomyces cerevisiae were tested for the ability to maintain their fermentative capacity during 24 h of carbon or nitrogen starvation. Starvation was imposed by transferring cells, exponentially growing in anaerobic batch cultures, to a defined growth medium lacking either a carbon or a nitrogen source. After 24 h of starvation, fermentative capacity was determined by addition of glucose and measurement of the resulting ethanol production rate. The results showed that 24 h of nitrogen starvation reduced the fermentative capacity by 70 to 95%, depending on the strain. Carbon starvation, on the other hand, provoked an almost complete loss of fermentative capacity in all of the strains tested. The absence of ethanol production following carbon starvation occurred even though the cells possessed a substantial glucose transport capacity. In fact, similar uptake capacities were recorded irrespective of whether the cells had been subjected to carbon or nitrogen starvation. Instead, the loss of fermentative capacity observed in carbon-starved cells was almost surely a result of energy deprivation. Carbon starvation drastically reduced the ATP content of the cells to values well below 0.1 μmol/g, while nitrogen-starved cells still contained approximately 6 μmol/g after 24 h of treatment. Addition of a small amount of glucose (0.1 g/liter at a cell density of 1.0 g/liter) at the initiation of starvation or use of stationary-phase instead of log-phase cells enabled the cells to preserve their fermentative capacity also during carbon starvation. The prerequisites for successful adaptation to starvation conditions are probably gradual nutrient depletion and access to energy during the adaptation period.  相似文献   

8.
Summary Changes in the adenylate pool size, energy charge values, ATP/ADP ratio, and the whole sum of nucleotide concentrations were studied during starvation of free and covalently immobilizedSaccharomyces cerevisiae cells. The results obtained indicate a better preservation of energy status of immobilized yeasts.  相似文献   

9.
Qualitative and quantitative changes were observed in lipids, poly--hydroxybutyrate (PHB), and a cell wall peptidoglycan consitutent in a marine bacterial isolate during starvation for 24 h in an energy and nutrient-free medium. While the amount and composition of the membrane fatty acids fluctuated within the first hours of starvation, the total amount of fatty acids decreased during the starvation period. Furthermore, the ratio of monounsaturated to saturated fatty acids decreased and the proportion of short chain fatty acids increased. In the very early phase of starvation the bacteria contained PHB, which had been accumulated during the growth phase, but after 3 h no PHB was detected. Cells starved for phosphorus showed a different pattern as PHB was initially accumulated and did not decrease until 5 h of starvation. Synthesis of the cell wall amino acid d-alanine was initiated during the first phase of starvation. The effects of these changes on membrane fluidity and uptake of substrates as well as the use of fatty acids and PHB as energy resources during starvation are discussed.Non-common abbreviations FID flame ionization detector - GC gas chromatography - HFBA heptafluorobutyric anhydride - MS mass spectrometry - NSS nine salt solution - PHB poly--hydroxybutyrate - PFB pentafluorobenzylbromide  相似文献   

10.
11.
Regulation of cytosol 5'-nucleotidase by adenylate energy charge   总被引:5,自引:0,他引:5  
In the physiological range of the adenylate energy charge in liver (0.7-0.9), th rate of AMP-hydrolysis catalysed by rat liver cytosol 5'-nucleotidase (5'-ribonucleotide phosphohydrolase, EC 3.1.3.5) increased sharply with decreasing energy charge. In addition, a decrease in the concentration of Pi caused marked acceleration of the AMP-hydrolysing activity over the physiological range of adenylate energy charge. These responses seem to serve to protect the cells against a metabolic stress which could result from sudden utilization of ATP by removal of AMP. The AMP-hydrolysing activity of this enzyme decreased sharply as the size of the adenine nucleotide pool decreased in the physiological range. This effect may be a self-limiting response to prevent excess depletion of the pool. IMP-hydrolysing activity of this enzyme increased with increasing adenylate energy charge. But no marked response to its variation within the physiological range was observed. On the basis of the data obtained in this study, the IMP-hydrolysing activity of the cytosol 5'-nucleotidase in rat liver cells seems to be comparable to that of AMP deaminase reaction, but the AMP-hydrolysing activity was estimated to be less than 10% of AMP deaminase reaction at energy charge value of about 0.7. This strongly suggests that the AMP leads to IMP leads to inosine pathway is more significant that the AMP leads to adenosine leads to inosine pathway in rat liver.  相似文献   

12.
Bakers' yeast cells, Saccharomyces cerevisiae, if grown aerobically on ethanol or if grown aerobically on glucose and allowed to pass into stationary phase, with utilization of accumulated ethanol, maintain a normal value (0.8 to 0.9) of the adenylate energy charge during prolonged starvation. In contrast, cells grown anaerobically on glucose and cells in the early stages of aerobic growth on glucose exhibit a rapid decrease of energy charge if transferred to medium lacking on energy source. These results suggest that functional mitochondria or enzymes of balance of adenine nucleotides during starvation. Yeast cells remain viable at energy charge values below 0.1, in marked contrast to results previously obtained with Escherichia coli. In other respects, the engery charge responses of yeast to starvation and refeeding are generally similar to those previously reported for E. coli.  相似文献   

13.
Entry into the viable but nonculturable state by the human bacterial pathogen Vibrio vulnificus in artificial seawater microcosms was studied. In contrast to the long-term culturability exhibited by cells incubated under these starvation conditions at room temperature, cells exposed to a temperature downshift to 5 degrees C exhibited an immediate decrease in culturability. Cells incubated at low temperature exhibited a morphological change from rods to cocci but demonstrated no reductive division. Of 10 factors studied which might affect the nonculturable response in V. vulnificus, only the physiological age of the cells was found to significantly affect the rate at which cells became nonculturable. The nonculturable response appears to be related to the starvation response, as prestarvation at room temperature for 24 h was found to eliminate the nonculturable response of cells subsequently incubated at 5 degrees C. This observation suggests that the synthesis of starvation proteins may repress the viable but nonculturable program displayed during low-temperature incubation. The possible ecological significance of these findings is discussed.  相似文献   

14.
Entry into the viable but nonculturable state by the human bacterial pathogen Vibrio vulnificus in artificial seawater microcosms was studied. In contrast to the long-term culturability exhibited by cells incubated under these starvation conditions at room temperature, cells exposed to a temperature downshift to 5 degrees C exhibited an immediate decrease in culturability. Cells incubated at low temperature exhibited a morphological change from rods to cocci but demonstrated no reductive division. Of 10 factors studied which might affect the nonculturable response in V. vulnificus, only the physiological age of the cells was found to significantly affect the rate at which cells became nonculturable. The nonculturable response appears to be related to the starvation response, as prestarvation at room temperature for 24 h was found to eliminate the nonculturable response of cells subsequently incubated at 5 degrees C. This observation suggests that the synthesis of starvation proteins may repress the viable but nonculturable program displayed during low-temperature incubation. The possible ecological significance of these findings is discussed.  相似文献   

15.
Carbon starvation induces the development of a starvation- and stress-resistant cell state in marine Vibrio sp. strain S14 (CCUG 15956). The starved cells remain highly responsive to nutrients during prolonged starvation and exhibit instantaneous severalfold increases in the rates of protein synthesis and RNA synthesis when substrate is added. In order to elucidate the physiological basis for the survival of cells that are starved for a long time, as well as the capacity of these cells for rapid and efficient recovery, we analyzed the ribosome content of carbon-starved Vibrio sp. strain S14 cells. By using direct chemical measurements of the amounts of ribosomal particles in carbon-starved cultures, we demonstrated that ribosomes were lost relatively slowly (half life, 79 h) and that they existed in large excess over the apparent demand for protein synthesis. After 24 h of starvation the total rate of protein synthesis was 2.3% of the rate during growth, and after 3 days this rate was 0.7% of the rate during growth; the relative amounts of ribosomal particles at these times were 81 and 52%, respectively. The ribosome population consisted of 90% 70S monoribosomes, and no polyribosomes were detected in the starved cells. The 70S monoribosomes were responsible for the bulk of the protein synthesis during carbon starvation; some activity was also detected in the polyribosome size region on sucrose density gradients. We suggest that nongrowing carbon-starved Vibrio sp. strain S14 cells possess an excess protein synthesis capacity, which may be essential for their ability to immediately initiate an upshift program when substrate is added.  相似文献   

16.
AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) was found in extract of baker's yeast (Saccharomyces cerevisiae), and was purified to electrophoretic homogeneity using phosphocellulose adsorption chromatography and affinity elution by ATP. The enzyme shows cooperative binding of AMP (Hill coefficient, nH, 1.7) with an s0.5 value of 2.6 mM in the absence or presence of alkali metals. ATP acts as a positive effector, lowering nH to 1.0 and s0.5 to 0.02 mM. P1 inhibits the enzyme in an allosteric manner: s0.5 and nH values increase with increase in Pi concentration. In the physiological range of adenylate energy charge in yeast cells (0.5 to 0.9), the AMP deaminase activity increases sharply with decreasing energy charge, and the decrease in the size of adenylate pool causes a marked decrease in the rate of the deaminase reaction. AMP deaminase may act as a part of the system that protects against wide excursions of energy charge and adenylate pool size in yeast cells. These suggestions, based on the properties of the enzyme observed in vitro, are consistent with the results of experiments on baker's yeast in vivo reported by other workers.  相似文献   

17.
During conditions of energy and carbon excess Cellulomonas sp. accumulates intracellularly two different carbohydrate storage products in different relative concentrations: trehalose and glycogen. During carbon starvation these compounds are degraded at different rates and are therefore characterized metabolically by different half-life periods (glycogen 1.6 h, trehalose 34 h). Other parameters which bear some relation to viability during conditions of stress are compared with these half-life periods. The half-life period of the adenylate energy charge ECA (52 h) is similar to the trehalose half-life period, and it is concluded that it is trehalose which is essential for long-term survival while glycogen is used in the very early stages of carbon starvation to produce energy for metabolism under these conditions. Evidence is presented that two mechanisms are active for the stabilization of the intracellular adenylate energy charge: specific excretion and adenylate degradation.  相似文献   

18.
The response of the marine Vibrio sp. strain S14 to starvation for carbon, nitrogen, or phosphorus and to simultaneous depletion of all these nutrients (multiple-nutrient starvation) was examined with respect to survival, stress resistance, quantitative and qualitative alterations in protein and RNA synthesis, and the induction of the stringent control. Of the conditions tested, carbon starvation and multiple-nutrient starvation both promoted long-term starvation resistance and a rapid induction of the stringent control, as deduced from the kinetics of RNA synthesis. Carbon- and multiple-nutrient-starved cells were also found to become increasingly resistant to heat, UV, near-UV, and CdCl2 stress. Nitrogen- and phosphorus-starved cells demonstrated a poor ability to survive in the presence of carbon and did not develop a marked resistance to the stresses examined. The carbon, nitrogen, and phosphorus starvation stimulons consisted of about 20 proteins each, while simultaneous starvation for all the nutrients elicited an increased synthesis of 42 polypeptides. Nine common proteins were found to be induced regardless of the starvation condition used and were tentatively termed general starvation proteins. It was also demonstrated that the total number of proteins induced in response to multiple-nutrient starvation was not a predictable sum of the different individual starvation stimulons. Multiple-nutrient starvation induced 14 proteins which were not detected at increased levels of expression in response to individual starvation conditions. Furthermore, four out of five phosphorus starvation-specific polypeptides were not induced during simultaneous starvation for phosphorus, nitrogen, and carbon. The results are discussed in light of the physiological alterations previously described for Vibrio sp. strain S14 cells starved for carbon, nitrogen, and phosphorus simultaneously.  相似文献   

19.
The response of the marine Vibrio sp. strain S14 to starvation for carbon, nitrogen, or phosphorus and to simultaneous depletion of all these nutrients (multiple-nutrient starvation) was examined with respect to survival, stress resistance, quantitative and qualitative alterations in protein and RNA synthesis, and the induction of the stringent control. Of the conditions tested, carbon starvation and multiple-nutrient starvation both promoted long-term starvation resistance and a rapid induction of the stringent control, as deduced from the kinetics of RNA synthesis. Carbon- and multiple-nutrient-starved cells were also found to become increasingly resistant to heat, UV, near-UV, and CdCl2 stress. Nitrogen- and phosphorus-starved cells demonstrated a poor ability to survive in the presence of carbon and did not develop a marked resistance to the stresses examined. The carbon, nitrogen, and phosphorus starvation stimulons consisted of about 20 proteins each, while simultaneous starvation for all the nutrients elicited an increased synthesis of 42 polypeptides. Nine common proteins were found to be induced regardless of the starvation condition used and were tentatively termed general starvation proteins. It was also demonstrated that the total number of proteins induced in response to multiple-nutrient starvation was not a predictable sum of the different individual starvation stimulons. Multiple-nutrient starvation induced 14 proteins which were not detected at increased levels of expression in response to individual starvation conditions. Furthermore, four out of five phosphorus starvation-specific polypeptides were not induced during simultaneous starvation for phosphorus, nitrogen, and carbon. The results are discussed in light of the physiological alterations previously described for Vibrio sp. strain S14 cells starved for carbon, nitrogen, and phosphorus simultaneously.  相似文献   

20.
Cells of the non-N2-fixing cyanobacterium Phormidium laminosum (Agardh) Gomont (strain OH-1-pCl1) showed doubling times of 24 h in media containing nitrate and 120 h in media without a nitrogen source. Nitrogen starvation resulted in a drastic decrease in the cellular content of chlorophyll, phycobiliproteins (phycocyanin and allophycocyanin), and other soluble proteins, although the total protein of cells was unchanged. N-starved cells showed an exocellular layer of mucilage that rapidly increased with starvation time. The appearance of N deficiency symptoms was strongly dependent on culture conditions, and it was faster under the optimal conditions used for cell growth. The relative content of C and N of nitrate-grown cells remained more or less constant during all growth phases (C/N ratio of ca. 5) but diminished at different rates in N-starved cells. Cells subjected to N starvation for 48 h had a C/N ratio of more than 10. N starvation also resulted in the selective degradation of soluble poly-peptides of masses lower than 20 kDa (which include those constituting phycobiliproteins), whereas the relative content of soluble polypeptides of greater size increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号