首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patients affected with Refsum disease (RD) have elevated levels of phytanic acid due to a deficiency of the peroxisomal enzyme phytanoyl-CoA hydroxylase (PhyH). In most patients with RD, disease-causing mutations in the PHYH gene have been identified, but, in a subset, no mutations could be found, indicating that the condition is genetically heterogeneous. Linkage analysis of a few patients diagnosed with RD, but without mutations in PHYH, suggested a second locus on chromosome 6q22-24. This region includes the PEX7 gene, which codes for the peroxin 7 receptor protein required for peroxisomal import of proteins containing a peroxisomal targeting signal type 2. Mutations in PEX7 normally cause rhizomelic chondrodysplasia punctata type 1, a severe peroxisomal disorder. Biochemical analyses of the patients with RD revealed defects not only in phytanic acid alpha-oxidation but also in plasmalogen synthesis and peroxisomal thiolase. Furthermore, we identified mutations in the PEX7 gene. Our data show that mutations in the PEX7 gene may result in a broad clinical spectrum ranging from severe rhizomelic chondrodysplasia punctata to relatively mild RD and that clinical diagnosis of conditions involving retinitis pigmentosa, ataxia, and polyneuropathy may require a full screen of peroxisomal functions.  相似文献   

2.
The peroxisome-biogenesis disorders (PBDs) are a set of often lethal genetic diseases characterized by mental retardation and defective peroxisomal matrix protein import. Mutations in PEX12 are known to underlie the disease in two patients from complementation group 3 of the PBDs. Here we show that all patients from this group carry mutations on both alleles of PEX12. A comparison between PEX12 genotypes and the clinical and cellular phenotypes of the corresponding PBD patients suggests a relatively straightforward relationship between genotype and phenotype in this group of the PBDs, such that the loss of PEX12 function leads to more-severe cellular and clinical phenotypes. However, one patient who presented relatively mild clinical and cellular phenotypes was a compound heterozygote for two seemingly severe mutations on each PEX12 allele. PEX12 mRNA present in the patient's cells was derived from only one allele, the one that carried a 2-bp deletion early in the PEX12 coding region, c.26,27Delta. The deduced protein product of this mRNA would contain only the first eight amino acids of the protein, and yet this mutant PEX12 cDNA displayed significant PEX12 activity in a functional complementation assay. Surprisingly, the PEX12/c.26, 27Delta cDNA directed the synthesis of a 29-kD PEX12 protein in vitro, a result that is consistent with translation initiation at a downstream AUG codon. Transfection studies confirmed the expression of similarly sized PEX12 proteins from the PEX12/c.26,27Delta allele. Thus, it appears that translation initiation at internal AUG codons may modulate disease phenotypes and should be considered whenever unexpectedly mild phenotypes result from severe mutations early in the coding region.  相似文献   

3.
Rhizomelic chondrodysplasia punctata (RCDP) is a lethal autosomal recessive disease correspondingto complementation group 11 (CG 11), the second most common of the thirteen CGs of peroxisomalbiogenesis disorders (PBDs). RCDP is characterized by proximal limb shortening, severely disturbedendochondrial bone formation, and mental retardation, but there is an absence of the neuronal migrationdefect found in the other PBDs. Plasmalogen biosynthesis and phytanic acid oxidation are deficient, butvery long chain fatty acid (VLCFA) oxidation is normal. At the cellular level, RCDP is unique in thatthe biogenesis of most peroxisomal proteins is normal, but a specific subset of at least four, and maybemore, peroxisomal matrix proteins fail to be imported from the cytosol. In this review, we discuss recentadvances in understanding RCDP, most prominently the cloning of the affected gene, PEX7,and identification of PEX7 mutations in RCDP patients. Human PEX7 wasidentified by virtue of its sequence similarity to its Saccharomyces cerevisiae ortholog, whichhad previously been shown to encode Pex7p, an import receptor for type 2 peroxisomal targetingsequences (PTS2). Normal human PEX7 expression rescues the cellular defects in culturedRCDP cells, and cDNA sequence analysis has identified a variety of PEX7 mutations in RCDP patients,including a deletion of 100 nucleotides, probably due to a splice site mutation, and a prevalent nonsensemutation which results in loss of the carboxyterminal 32 amino acids. Identification of RCDP as a PTS2import disorder explains the observation that several, but not all, peroxisomal matrix proteins aremistargeted in this disease; three of the four proteins deficient in RCDP have now been shown to bePTS2-targeted.  相似文献   

4.
Many cell surface proteins in mammalian cells are anchored to the plasma membrane via glycosylphosphatidylinositol (GPI). The predominant form of mammalian GPI contains 1-alkyl-2-acyl phosphatidylinositol (PI), which is generated by lipid remodeling from diacyl PI. The conversion of diacyl PI to 1-alkyl-2-acyl PI occurs in the ER at the third intermediate in the GPI biosynthetic pathway. This lipid remodeling requires the alkyl-phospholipid biosynthetic pathway in peroxisome. Indeed, cells defective in dihydroxyacetone phosphate acyltransferase (DHAP-AT) or alkyl-DHAP synthase express only the diacyl form of GPI-anchored proteins. A defect in the alkyl-phospholipid biosynthetic pathway causes a peroxisomal disorder, rhizomelic chondrodysplasia punctata (RCDP), and defective biogenesis of peroxisomes causes Zellweger syndrome, both of which are lethal genetic diseases with multiple clinical phenotypes such as psychomotor defects, mental retardation, and skeletal abnormalities. Here, we report that GPI lipid remodeling is defective in cells from patients with Zellweger syndrome having mutations in the peroxisomal biogenesis factors PEX5, PEX16, and PEX19 and in cells from patients with RCDP types 1, 2, and 3 caused by mutations in PEX7, DHAP-AT, and alkyl-DHAP synthase, respectively. Absence of the 1-alkyl-2-acyl form of GPI-anchored proteins might account for some of the complex phenotypes of these two major peroxisomal disorders.  相似文献   

5.
6.
7.
Deficiency in the PTS2 protein import pathway due to mutations in PEX7 gene results in the rhizomelic chondrodysplasia punctata (RCDP) type 1. In the present study, we have reported a novel missense mutation, W75R, in the PEX7 gene in an Iranian patient with the RCDP type 1. The inability of PEX7 protein to transport PTS2 containing proteins including peroxisomal 3-ketoacyl-CoA thiolase and PTS2-EGFP protein to the surface of the peroxisomes showed that the W75R mutation in PEX7 gene severely impaired the function of PEX7 protein and was responsible for RCDP type 1 in this patient.  相似文献   

8.
Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), and infantile Refsum disease (IRD) are clinically overlapping syndromes, collectively called "peroxisome biogenesis disorders" (PBDs), with clinical features being most severe in ZS and least pronounced in IRD. Inheritance of these disorders is autosomal recessive. The peroxisome biogenesis disorders are genetically heterogeneous, having at least 12 different complementation groups (CGs). The gene affected in CG1 is PEX1. Approximately 65% of the patients with PBD harbor mutations in PEX1. In the present study, we used SSCP analysis to evaluate a series of patients belonging to CG1 for mutations in PEX1 and studied phenotype-genotype correlations. A complete lack of PEX1 protein was found to be associated with severe ZS; however, residual amounts of PEX1 protein were found in patients with the milder phenotypes, NALD and IRD. The majority of these latter patients carried at least one copy of the common G843D allele. When patient fibroblasts harboring this allele were grown at 30 degrees C, a two- to threefold increase in PEX1 protein levels was observed, associated with a recovery of peroxisomal function. This suggests that the G843D missense mutation results in a misfolded protein, which is more stable at lower temperatures. We conclude that the search for the factors and/or mechanisms that determine the stability of mutant PEX1 protein by high-throughput procedures will be a first step in the development of therapeutic strategies for patients with mild PBDs.  相似文献   

9.
The human disorders of peroxisome biogenesis (PBDs) are subdivided into 12 complementation groups (CGs). CG8 is one of the more common of these and is associated with varying phenotypes, ranging from the most severe, Zellweger syndrome (ZS), to the milder neonatal adrenoleukodystrophy (NALD) and infantile Refsum disease (IRD). PEX26, encoding the 305-amino-acid membrane peroxin, has been shown to be deficient in CG8. We studied the PEX26 genotype in fibroblasts of eight CG8 patients--four with the ZS phenotype, two with NALD, and two with IRD. Catalase was mostly cytosolic in all these cell lines, but import of the proteins that contained PTS1, the SKL peroxisome targeting sequence, was normal. Expression of PEX26 reestablished peroxisomes in all eight cell lines, confirming that PEX26 defects are pathogenic in CG8 patients. When cells were cultured at 30 degrees C, catalase import was restored in the cell lines from patients with the NALD and IRD phenotypes, but to a much lesser extent in those with the ZS phenotype, indicating that temperature sensitivity varied inversely with the severity of the clinical phenotype. Several types of mutations were identified, including homozygous G89R mutations in two patients with ZS. Expression of these PEX26 mutations in pex26 Chinese hamster ovary cells resulted in cell phenotypes similar to those in the human cell lines. These findings confirm that the degree of temperature sensitivity in pex26 cell lines is predictive of the clinical phenotype in patients with PEX26 deficiency.  相似文献   

10.
Mulibrey nanism is a rare growth disorder of prenatal onset caused by mutations in the TRIM37 gene, which encodes a RING-B-box-coiled-coil protein. The pathogenetic mechanisms of mulibrey nanism are unknown. We have used transiently transfected cells and antibodies raised against the predicted TRIM37 protein to characterize the TRIM37 gene product and to determine its intracellular localization. We show that the human TRIM37 cDNA encodes a peroxisomal protein with an apparent molecular weight of 130 kD. Peroxisomal localization is compromised in mutant protein representing the major Finnish TRIM37 mutation but is retained in the protein representing the minor Finnish mutation. Colocalization of endogenous TRIM37 with peroxisomal markers was observed by double immunofluorescence staining in HepG2 and human intestinal smooth muscle cell lines. In human tissue sections, TRIM37 shows a granular cytoplasmic pattern. Endogenous TRIM37 is not imported into peroxisomes in peroxin 1 (PEX1(-/-)) and peroxin 5 (PEX5(-/-)) mutant fibroblasts but is imported normally in peroxin 7 (PEX7(-/-)) deficient fibroblasts, giving further evidence for a peroxisomal localization of TRIM37. Fibroblasts derived from patients with mulibrey nanism lack C-terminal TRIM37 immunoreactivity but stain normally for both peroxisomal matrix and membrane markers, suggesting apparently normal peroxisome biogenesis in patient fibroblasts. Taken together, this molecular evidence unequivocally indicates that TRIM37 is located in the peroxisomes, and Mulibrey nanism thus can be classified as a new peroxisomal disorder.  相似文献   

11.
We developed an improved method for isolation of peroxisome biogenesis-defective somatic animal cell mutants, using a combination of green fluorescent protein (GFP) expression and the 9-(1'-pyrene)nonanol/ultraviolet (P9OH/UV) selection method. We used TKaG1 and TKaG2 cells, the wild-type Chinese hamster ovary (CHO) cells, CHO-K1, that had been stably transfected with cDNAs each encoding rat Pex2p as well as GFP tagged at the C-terminus with peroxisome targeting signal type 1 (PTS1) or N-terminally PTS2-tagged GFP. P9OH/UV-resistant cell colonies were examined for intracellular location of GFP on unfixed cells, by fluorescence microscopy. Seven each of the mutant cell clones isolated from TKaG1 and TKaG2 showed cytosolic GFP-PTS1 and PTS2-GFP, respectively, indicating the defect in peroxisome assembly. By transfection of PEX2, PEX5, PEX6, and PEX12 cDNAs and cell fusion analysis between the CHO cell mutants, five different complementation groups (CGs) were identified. Two mutant clones, ZPG207 and ZPG208, belonged to novel CGs. Further CG analysis using fibroblasts from patients with peroxisome biogenesis disorders, including rhizomelic chondrodysplasia punctata (RCDP), revealed that ZPG208 belonged to none of human CGs. ZPG207 was classified into the same CG as RCDP. Taken together, ZPG208 is in a newly identified, the 12th, CG in peroxisome-deficient CHO mutants reported to date and represents a novel mammalian CG.  相似文献   

12.
The peroxisome-biogenesis disorders (PBDs) are a group of genetically heterogeneous, lethal diseases that are characterized by neuronal, hepatic, and renal abnormalities; severe mental retardation; and, in their most severe form, death within the 1st year of life. Cells from all PBD patients exhibit decreased import of one or more classes of peroxisome matrix proteins, a phenotype shared by yeast pex mutants. We identified the human orthologue of yeast PEX10 and observed that its expression rescues peroxisomal matrix-protein import in PBD patients'' fibroblasts from complementation group 7 (CG7). In addition, we detected mutations on both copies of PEX10 in two unrelated CG7 patients. A Zellweger syndrome patient, PBD100, was homozygous for a splice donor-site mutation that results in exon skipping and loss of 407 bp from the PEX10 open reading frame. A more mildly affected neonatal adrenoleukodystrophy patient was a compound heterozygote for a missense mutation in the PEX10 zinc-binding domain, H290Q, and for a nonsense mutation, R125ter. Although all three mutations attenuate PEX10 activity, the two alleles detected in the mildly affected patient, PBD052, encode partially functional PEX10 proteins. PEX10-deficient PBD100 cells contain many peroxisomes and import peroxisomal membrane proteins but do not import peroxisomal matrix proteins, indicating that loss of PEX10 has its most pronounced effect on peroxisomal matrix-protein import.  相似文献   

13.
Rhizomelic chondrodysplasia punctata is a rare autosomal recessive disorder characterized by stippled epiphyses and rhizomelic shortening of the long bones. We report 3 subjects of rhizomelic chondrodysplasia punctata from India and thePEX7 mutations identified in them. The commonPEX7-L292X allele, whose high frequency is due to a founder effect in the northern European Caucasian population, was not identified in these patients. Instead, 2 novel alleles are described, including 64_65delGC, which was present on a singlePEX7 haplotype and could represent a common allele in the Indian population.  相似文献   

14.
We have identified ScPex18p and ScPex21p, two novel S. cerevisiae peroxins required for protein targeting via the PTS2 branch of peroxisomal biogenesis. Targeting by this pathway is known to involve the interaction of oligopeptide PTS2 signals with Pex7p, the PTS2 receptor. Pex7p function is conserved between yeasts and humans, with defects in the human protein causing rhizomelic chondrodysplasia punctata (RCDP), a severe, lethal peroxisome biogenesis disorder characterized by aberrant targeting of several PTS2 peroxisomal proteins, but uncertainty remains about the subcellular localization of this receptor. Previously, we have reported that ScPex7p resides predominantly in the peroxisomal matrix, suggesting that it may function as a highly unusual intraorganellar import receptor, and the data presented in this paper identify Pex18p and Pex21p as key components in the targeting of Pex7p to peroxisomes. They each interact specifically with Pex7p both in two-hybrid analyses and in vitro. In cells lacking both Pex18p and Pex21p, Pex7p remains cytosolic and PTS2 targeting is completely abolished. Pex18p and Pex21p are weakly homologous to each other and display partial functional redundancy, indicating that they constitute a two-member peroxin family specifically required for Pex7p and PTS2 targeting.  相似文献   

15.
16.
Epimerase-deficiency galactosemia results from impairment of the human enzyme UDP-galactose-4-epimerase (hGALE). We and others have identified substitution mutations in the hGALE alleles of patients with the clinically mild, peripheral form of epimerase deficiency. We report here the first identification of an hGALE mutation in a patient with the clinically severe, generalized form of epimerase deficiency. The mutation, V94M, was found on both GALE alleles of this patient. This same mutation also was found in the homozygous state in two additional patients with generalized epimerase deficiency. The specific activity of the V94M-hGALE protein expressed in yeast was severely reduced with regard to UDP-galactose and partially reduced with regard to UDP-N-acetylgalactosamine. In contrast, two GALE-variant proteins associated with peripheral epimerase deficiency, L313M-hGALE and D103G-hGALE, demonstrated near-normal levels of activity with regard to both substrates, but a third allele, G90E-hGALE, demonstrated little, if any, detectable activity, despite near-normal abundance. G90E originally was identified in a heterozygous patient whose other allele remains uncharacterized. Thermal lability and protease-sensitivity studies demonstrated compromised stability in all of the partially active mutant enzymes.  相似文献   

17.
PEX genes encode peroxins, which are required for the biogenesis of peroxisomes. The Yarrowia lipolytica PEX17 gene encodes the peroxin Pex17p, which is 671 amino acids in length and has a predicted molecular mass of 75,588 Da. Pex17p is peripherally associated with the peroxisomal membrane. The carboxyl-terminal tripeptide, Gly-Thr-Leu, of Pex17p is not necessary for its targeting to peroxisomes. Synthesis of Pex17p is low in cells grown in glucose-containing medium and increases after the cells are shifted to oleic acid-containing medium. Cells of the pex17-1 mutant, the original mutant strain, and the pex17-KA mutant, a strain in which most of the PEX17 gene is deleted, fail to form normal peroxisomes but instead contain numerous large, multimembraned structures. The import of peroxisomal matrix proteins in these mutants is selectively impaired. This selective import is not a function of the nature of the peroxisomal targeting signal. We suggest a regulatory role for Pex17p in the import of a subset of matrix proteins into peroxisomes.  相似文献   

18.

Background

Can sequence segments coding for subcellular targeting or for posttranslational modifications occur in proteins that are not substrates in either of these processes? Although considerable effort has been invested in achieving low false-positive prediction rates, even accurate sequence-analysis tools for the recognition of these motifs generate a small but noticeable number of protein hits that lack the appropriate biological context but cannot be rationalized as false positives.

Results

We show that the carboxyl termini of a set of definitely non-peroxisomal proteins with predicted peroxisomal targeting signals interact with the peroxisomal matrix protein receptor peroxin 5 (PEX5) in a yeast two-hybrid test. Moreover, we show that examples of these proteins - chicken lysozyme, human tyrosinase and the yeast mitochondrial ribosomal protein L2 (encoded by MRP7) - are imported into peroxisomes in vivo if their original sorting signals are disguised. We also show that even prokaryotic proteins can contain peroxisomal targeting sequences.

Conclusions

Thus, functional localization signals can evolve in unrelated protein sequences as a result of neutral mutations, and subcellular targeting is hierarchically organized, with signal accessibility playing a decisive role. The occurrence of silent functional motifs in unrelated proteins is important for the development of sequence-based function prediction tools and the interpretation of their results. Silent functional signals have the potential to acquire importance in future evolutionary scenarios and in pathological conditions.  相似文献   

19.
PEX13 is an integral membrane protein on the peroxisome that regulates peroxisomal matrix protein import during peroxisome biogenesis. Mutations in PEX13 and other peroxin proteins are associated with Zellweger syndrome spectrum (ZSS) disorders, a subtype of peroxisome biogenesis disorder characterized by prominent neurological, hepatic, and renal abnormalities leading to neonatal death. The lack of functional peroxisomes in ZSS patients is widely accepted as the underlying cause of disease; however, our understanding of disease pathogenesis is still incomplete. Here, we demonstrate that PEX13 is required for selective autophagy of Sindbis virus (virophagy) and of damaged mitochondria (mitophagy) and that disease‐associated PEX13 mutants I326T and W313G are defective in mitophagy. The mitophagy function of PEX13 is shared with another peroxin family member PEX3, but not with two other peroxins, PEX14 and PEX19, which are required for general autophagy. Together, our results demonstrate that PEX13 is required for selective autophagy, and suggest that dysregulation of PEX13‐mediated mitophagy may contribute to ZSS pathogenesis.  相似文献   

20.
In yeasts, the peroxin Pex3p was identified as a peroxisomal integral membrane protein that presumably plays a role in the early steps of peroxisomal assembly. In humans, defects of peroxins cause peroxisomal biogenesis disorders such as Zellweger syndrome. We previously reported data on the human PEX3 cDNA and its protein, which in addition to the peroxisomal targeting sequence contains a putative endoplasmic reticulum targeting signal. Here we report the genomic organization, sequencing of the putative promoter region, chromosomal localization, and physical mapping of the human PEX3 gene. The gene is composed of 12 exons and 11 introns spanning a region of approximately 40 kb. The highly conserved putative promoter region is very GC rich, lacks typical TATA and CCAAT boxes, and contains potential Sp1, AP1, and AP2 binding sites. The gene was localized to chromosome 6q23-24 and D6S279 was identified to be the closest positional marker. As yeast mutants deficient in PEX3 have been shown to lack peroxisomes as well as any peroxisomal remnant structures, human PEX3 is a candidate gene for peroxisomal assembly disorders. Mutation analysis of the human PEX3 gene was therefore performed in fibroblasts from patients suffering from peroxisome biogenesis disorders. Complementation groups 1, 4, 7, 8, and 9 according to the numbering system of Kennedy Krieger Institute were analyzed but no difference to the wild-type sequence was detected. PEX3 mutations were therefore excluded as the molecular basis of the peroxisomal defect in these complementation groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号