首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant viruses encode movement proteins that are essential for infection of the host but are not required for viral replication or encapsidation. Squash leaf curl virus (SqLCV), a bipartite geminivirus with a single-stranded DNA genome, encodes two movement proteins, BR1 and BL1, that have been implicated in separate functions in viral movement. To further elucidate these functions, we have investigated the nucleic acid binding properties and cellular localization of BR1 and BL1. In this study, we showed that BR1 binds strongly to single-stranded nucleic acids, with a higher affinity for single-stranded DNA than RNA, and is localized to the nucleus of SqLCV-infected plant cells. In contrast, BL1 binds only weakly to single-stranded nucleic acids and not at all to double-stranded DNA. The nuclear localization of BR1 and the previously demonstrated plasma membrane localization of BL1 were also observed when these proteins were expressed from baculovirus vectors in Spodoptera frugiperda insect cells. The biochemical properties and cellular locations of BR1 and BL1 suggest a model for SqLCV movement whereby BR1 is involved in the shuttling of the genome in and/or out of the nucleus and BL1 acts at the plasma membrane/cell wall to facilitate viral movement across cell boundaries.  相似文献   

2.
The movement of bipartite geminiviruses such as squash leaf curl virus (SqLCV) requires the cooperative interaction of two essential virus-encoded movement proteins, BR1 and BL1. While the viral coat protein AR1 is not essential for systemic infection, genetic studies demonstrate that its presence masks the defective phenotype of certain BR1 missense mutants, thus suggesting that coat protein does interact with the viral movement pathway. To further examine the mechanism of this interaction, we have constructed alanine-scanning mutants of AR1 and studied them for the ability to mask the infectivity defects of appropriate BR1 mutants, for the ability to target to the nucleus and to bind viral single-stranded DNA (ssDNA) and multimerize, and for effects on the accumulation of replicated viral ssDNA. We identified a specific region of AR1 required for masking of appropriate BR1 mutants and showed that this same region of AR1 was also important for ssDNA binding and the accumulation of viral replicated ssDNA. This region of AR1 also overlapped that involved in multimerization of the coat protein. We also found that the accumulation in protoplasts of single-stranded forms of a recombinant plasmid that included the SqLCV replication origin but was too large to be encapsidated was dependent on the presence of AR1 but did not appear to require encapsidation. These findings extend our model for SqLCV movement, demonstrating that coat protein affects viral movement through its ability to induce the accumulation of replicated viral ssDNA genomes. They further suggested that encapsidation was not required for the AR1-dependent accumulation of viral ssDNA.  相似文献   

3.
Bipartite geminiviruses, such as squash leaf curl virus (SqLCV), encode two movement proteins (MPs), BR1 and BL1, that are essential for viral movement in and subsequent infection of the host plant. To elucidate the biochemical functions of these MPs and define their respective contributions to viral infection, we have generated transgenic Nicotiana benthamiana plants expressing SqLCV BR1 and BL1. Transgenic plants expressing BR1 or a truncated BL1 were phenotypically indistinguishable from wild-type N. benthamiana. In contrast, transgenic plants expressing full-length BL1, alone or in combination with BR1, were strikingly abnormal both in their growth properties and phenotypic appearance, with leaves that were mosaic and curled under, thus mimicking typical SqLCV disease symptoms in this host. BL1 was localized to the cell wall and plasma membrane fractions, whereas BR1 was predominantly in the microsomal membrane fraction. These findings demonstrate that expression of BL1 in transgenic plants is sufficient to produce viral disease symptoms, and they further suggest that BL1 and BR1 carry out distinct and independent functions in viral movement.  相似文献   

4.
For the nuclear replicating bipartite geminiviruses such as squash leaf curl to systemically infect the host requires the active participation of two virus-encoded movement proteins, BR1 and BL1. These act in a cooperative manner to transport the viral single-stranded DNA genome from its site of replication in the nucleus to the cell periphery (A.A. Sanderfoot, S.G. Lazarowitz [1995] Plant Cell 7: 1185-1194). We have proposed that BR1 functions as a nuclear shuttle protein, transporting the viral single-stranded DNA to and from the nucleus as a complex that is recognized by BL1 for movement to adjacent cells. To further investigate this, we expressed BR1 mutants known to affect viral infectivity in Spodoptera frugiperda insect cells and Nicotiana tabacum L. cv Xanthi protoplasts and found these to be defective in either their nuclear targeting or their ability to be redirected to the cell periphery when co-expressed with BL1. Translational fusions to beta-glucuronidase and alanine-scanning mutagenesis further demonstrated that the C-terminal 86 amino acids of BR1 contains a domain(s) essential for its interaction with BL1 and identified two nuclear localization signals within the N-terminal 113 residues of BR1. These nuclear localization signals were precisely located within distinct 16- and 22-peptide segments of BR1. These studies support and extend our model for squash leaf curl virus movement, showing that BR1 has a domain structure, with an N-terminal region required for nuclear targeting and a C-terminal region required for its interaction with BL1.  相似文献   

5.
The E1 and E2 proteins from bovine papillomavirus bind cooperatively to the viral origin of DNA replication (ori), forming a complex which is essential for initiation of DNA replication. Cooperative binding has two components, in which (i) the DNA binding domains (DBDs) of the two proteins interact with each other and (ii) the E2 transactivation domain interacts with the helicase domain of E1. By generating specific point mutations in the DBD of E2, we have defined two patches of amino acids that are involved in the interaction with the E1 DBD. These same mutations, when introduced into the viral genome, result in severely reduced replication of the viral genome, as well as failure to transform mouse cells in tissue culture. Thus, the interaction between the E1 and E2 DBDs is important for the establishment of the viral genome as an episome and most likely contributes to the formation of a preinitiation complex on the viral ori.  相似文献   

6.
Plant viruses encode movement proteins that are essential for systemic infection of their host but dispensable for replication and encapsidation. BL1, one of the two movement proteins encoded by the bipartite geminivirus squash leaf curl virus, was immunolocalized to unique approximately 40-nm tubules that extended up to and across the walls of procambial cells in systemically infected pumpkin leaves. These tubules were not found in procambial cells from pumpkin seedlings inoculated with BL1 mutants that are defective in movement. The tubules also specifically stained with antisera to binding protein (BiP), indicating that they were derived from the endoplasmic reticulum. Independent confirmation of this endoplasmic reticulum association was obtained by subcellular fractionation studies in which BL1 was localized to fractions that contained both endoplasmic reticulum membranes and BiP. Thus, squash leaf curl virus appears to recruit the endoplasmic reticulum as a conduit for cell-to-cell movement of the viral genome.  相似文献   

7.
The nuclear export of proteins and RNAs has been studied in heterokaryons or by microinjecting test substrates into nuclei of HeLa cells or Xenopus oocytes. We have previously shown that the two movement proteins BR1 and BL1 encoded by the plant pathogenic squash leaf curl virus act in a coordinated manner to facilitate virus cell-to-cell movement and that one of these (BR1) is a nuclear shuttle protein. By using a novel in vivo cell-based assay for nuclear export in which nuclear-localized BR1 is trapped by BL1 and redirected to the cortical cytoplasm, we demonstrate that residues 177 to 198 of BR1 contain a leucine-rich nuclear export signal (NES) of the type found in the Rev protein encoded by the human immunodeficiency virus and in Xenopus TFIIIA. We further show that the TFIIIA NES can functionally replace the NES of BR1 in both nuclear export and viral infectivity. These findings suggest that this basic pathway for nuclear export is highly conserved among plant and animal cells and in yeast.  相似文献   

8.
The Tomato spotted wilt virus (TSWV) encoded NSm movement protein facilitates cell-to-cell spread of the viral genome through structurally modified plasmodesmata. NSm has been utilized as bait in yeast two-hybrid interaction trap screenings. As a result, a protein of unknown function, called At-4/1, was isolated from an Arabidopsis thaliana GAL4 activation domain-tagged cDNA library. Using polyclonal antibodies against bacterially expressed At-4/1, Western blot analysis of protein extracts isolated from different plant species as well as genome database screenings showed that homologues of At-4/1 seemed to be encoded by many vascular plants. For subcellular localization studies, At-4/1 was fused to green fluorescent protein, and corresponding expression vectors were used in particle bombardment and agroinfiltration assays. Confocal laser scannings revealed that At-4/1 assembled in punctate spots at the cell periphery. The protein accumulated intracellularly in a polarized fashion, appearing in only one-half of a bombarded epidermal cell, and, moreover, moved from cell to cell, forming twin-structured bodies seemingly located at both orifices of the plasmodesmatal pore. In coexpression studies, At-4/1 colocalized with a plant virus movement protein TGBp3 known to reside in endoplasmic reticulum-derived membrane structures located in close vicinity to plasmodesmata. Thus, At-4/1 belongs to a new family of plant proteins capable of directed intra- and intercellular trafficking.  相似文献   

9.
Movement proteins (MPs) encoded by plant viruses interact with host proteins to facilitate or interfere with intra‐ and/or intercellular viral movement. Using yeast two‐hybrid and bimolecular fluorescence complementation assays, we herein present in vivo evidence for the interaction between Alfalfa mosaic virus (AMV) MP and Arabidopsis Patellin 3 (atPATL3) and Patellin 6 (atPATL6), two proteins containing a Sec14 domain. Proteins with Sec14 domains are implicated in membrane trafficking, cytoskeleton dynamics, lipid metabolism and lipid‐mediated regulatory functions. Interestingly, the overexpression of atPATL3 and/or atPATL6 interfered with the plasmodesmata targeting of AMV MP and correlated with reduced infection foci size. Consistently, the viral RNA levels increased in the single and double Arabidopsis knockout mutants for atPATL3 and atPATL6. Our results indicate that, in general, MP–PATL interactions interfere with the correct subcellular targeting of MP, thus rendering the intracellular transport of viral MP‐containing complexes less efficient and diminishing cell‐to‐cell movement.  相似文献   

10.
Circoviruses lack an autonomous DNA polymerase and are dependent on the replication machinery of the host cell for de novo DNA synthesis. Accordingly, the viral DNA needs to cross both the plasma membrane and the nuclear envelope before replication can occur. Here we report on the subcellular distribution of the beak and feather disease virus (BFDV) capsid protein (CP) and replication-associated protein (Rep) expressed via recombinant baculoviruses in an insect cell system and test the hypothesis that the CP is responsible for transporting the viral genome, as well as Rep, across the nuclear envelope. The intracellular localization of the BFDV CP was found to be directed by three partially overlapping bipartite nuclear localization signals (NLSs) situated between residues 16 and 56 at the N terminus of the protein. Moreover, a DNA binding region was also mapped to the N terminus of the protein and falls within the region containing the three putative NLSs. The ability of CP to bind DNA, coupled with the karyophilic nature of this protein, strongly suggests that it may be responsible for nuclear targeting of the viral genome. Interestingly, whereas Rep expressed on its own in insect cells is restricted to the cytoplasm, coexpression with CP alters the subcellular localization of Rep to the nucleus, strongly suggesting that an interaction with CP facilitates movement of Rep into the nucleus.  相似文献   

11.
After cell entry, HIV undergoes rapid transport toward the nucleus using microtubules and microfilaments. Neither the cellular cytoplasmic components nor the viral proteins that interact to mediate transport have yet been identified. Using a yeast two-hybrid screen, we identified four cytoskeletal components as putative interaction partners for HIV-1 p24 capsid protein: MAP1A, MAP1S, CKAP1, and WIRE. Depletion of MAP1A/MAP1S in indicator cell lines and primary human macrophages led to a profound reduction in HIV-1 infectivity as a result of impaired retrograde trafficking, demonstrated by a characteristic accumulation of capsids away from the nuclear membrane, and an overall defect in nuclear import. MAP1A/MAP1S did not impact microtubule network integrity or cell morphology but contributed to microtubule stabilization, which was shown previously to facilitate infection. In addition, we found that MAP1 proteins interact with HIV-1 cores both in vitro and in infected cells and that interaction involves MAP1 light chain LC2. Depletion of MAP1 proteins reduced the association of HIV-1 capsids with both dynamic and stable microtubules, suggesting that MAP1 proteins help tether incoming viral capsids to the microtubular network, thus promoting cytoplasmic trafficking. This work shows for the first time that following entry into target cells, HIV-1 interacts with the cytoskeleton via its p24 capsid protein. Moreover, our results support a role for MAP1 proteins in promoting efficient retrograde trafficking of HIV-1 by stimulating the formation of stable microtubules and mediating the association of HIV-1 cores with microtubules.  相似文献   

12.
13.
Polyomavirus reaches the nucleus in a still encapsidated form, and the viral genome is readily found in association with the nuclear matrix. This association is thought to be essential for viral replication. In order to identify the protein(s) involved in the virus-nuclear matrix interaction, we focused on the possible roles exerted by the multifunctional cellular nuclear matrix protein Yin Yang 1 (YY1) and by the viral major capsid protein VP1. In the present work we report on the in vivo association between YY1 and VP1. Using the yeast two-hybrid system we demonstrate that the VP1 and YY1 proteins physically interact through the D-E region of VP1 and the activation domain of YY1.  相似文献   

14.
15.
The hepatitis B virus (HBV) X protein (HBx) is essential for virus infection and has been implicated in the development of liver cancer associated with chronic infection. HBx can interact with a number of cellular proteins, and in cell culture, it exhibits pleiotropic activities, among which is its ability to interfere with cell viability and stimulate HBV replication. Previous work has demonstrated that HBx affects cell viability by a mechanism that requires its binding to DDB1, a highly conserved protein implicated in DNA repair and cell cycle regulation. We now show that an interaction with DDB1 is also needed for HBx to stimulate HBV genome replication. Thus, HBx point mutants defective for DDB1 binding fail to complement the low level of replication of an HBx-deficient HBV genome when provided in trans, and one such mutant regains activity when directly fused to DDB1. Furthermore, DDB1 depletion by RNA interference specifically compromises replication of wild-type HBV, indicating that HBx produced from the viral genome also functions in a DDB1-dependent fashion. We also show that HBx in association with DDB1 acts in the nucleus and stimulates HBV replication mainly by enhancing viral mRNA levels, regardless of whether the protein is expressed from the HBV genome itself or supplied in trans. Interestingly, whereas HBx induces cell death in both HepG2 and Huh-7 hepatoma cell lines, it enhances HBV replication only in HepG2 cells, suggesting that the two activities involve distinct DDB1-dependent pathways.  相似文献   

16.
Geminiviruses are plant-infecting viruses with small circular single-stranded DNA genomes. These viruses utilize nuclear shuttle proteins (NSPs) and movement proteins (MPs) for trafficking of infectious DNA through the nuclear pore complex and plasmodesmata, respectively. Here, a biochemical approach was used to identify host factors interacting with the NSP and MP of the geminivirus Bean dwarf mosaic virus (BDMV). Based on these studies, we identified and characterized a host nucleoprotein, histone H3, which interacts with both the NSP and MP. The specific nature of the interaction of histone H3 with these viral proteins was established by gel overlay and in vitro and in vivo coimmunoprecipitation (co-IP) assays. The NSP and MP interaction domains were mapped to the N-terminal region of histone H3. These experiments also revealed a direct interaction between the BDMV NSP and MP, as well as interactions between histone H3 and the capsid proteins of various geminiviruses. Transient-expression assays revealed the colocalization of histone H3 and NSP in the nucleus and nucleolus and of histone H3 and MP in the cell periphery and plasmodesmata. Finally, using in vivo co-IP assays with a Myc-tagged histone H3, a complex composed of histone H3, NSP, MP, and viral DNA was recovered. Taken together, these findings implicate the host factor histone H3 in the process by which an infectious geminiviral DNA complex forms within the nucleus for export to the cell periphery and cell-to-cell movement through plasmodesmata.  相似文献   

17.
Functional interactions between papillomavirus E1 and E2 proteins.   总被引:4,自引:3,他引:1       下载免费PDF全文
DNA replication of papillomaviruses requires the viral E1 and E2 proteins. These proteins bind cooperatively to the viral origin of replication (ori), which contains binding sites for both proteins, forming an E1-E2-ori complex which is essential for initiation of DNA replication. To map the domains in E2 that are involved in the interaction with E1, we have used chimeric bovine papillomavirus (BPV)/human papillomavirus type 11 (HPV-11) E2 proteins. The results from this study show that both the DNA binding domain and the transactivation domain from BPV E2 independently can interact with BPV E1. However, the roles of these two interactions are different: the interaction between E1 and the activation domain of E2 is necessary and sufficient for cooperativity in binding and for DNA replication; the interaction between E1 and the DNA binding domain of E2 is required only when the binding sites for E1 and E2 are adjacent to each other, and the function of this interaction appears to be to facilitate the interaction between E1 and the transactivation domain of E2. These results indicate that the cooperative binding of E1 and E2 to the BPV ori takes place via a novel two-stage mechanism where one interaction serves as a trigger for the formation of the second, productive, interaction between the two proteins.  相似文献   

18.
Human T-cell leukemia virus type 1 Tax is a predominantly nuclear viral oncoprotein that colocalizes with cellular proteins in nuclear foci known as Tax speckled structures (TSS). Tax is also diffusely distributed throughout the cytoplasm, where it interacts with and affects the functions of cytoplasmic cellular proteins. Mechanisms that regulate the distribution of Tax between the cytoplasm and nucleus remain to be identified. Since Tax has been shown to promote genome instability by perturbing cell cycle progression and DNA repair mechanisms following DNA damage, we examined the effect of genotoxic stress on the subcellular distribution and interacting partners of Tax. Tax localization was altered in response to various forms of cellular stress, resulting in an increase in cytoplasmic Tax and a decrease in Tax speckled structures. Concomitantly, colocalization of Tax with sc35 (a TSS protein) decreased following stress. Tax translocation required the CRM1 nuclear export pathway, and a transient interaction between Tax and CRM1 was observed following stress. These results suggest that the subcellular distribution of Tax and the interactions between Tax and cellular proteins respond dynamically to cellular stress. Changes in Tax distribution and interacting partners are likely to affect cellular processes that regulate cellular transformation.  相似文献   

19.
20.
A new cell-to-cell transport model for Potexviruses   总被引:1,自引:0,他引:1  
In the last five years, we have gained significant insight into the role of the Potexvirus proteins in virus movement and RNA silencing. Potexviruses require three movement proteins, named triple gene block (TGB)p1, TGBp2, and TGBp3, and the viral coat protein (CP) to facilitate viral cell-to-cell and vascular transport. TGBp1 is a multifunctional protein that has RNA helicase activity, promotes translation of viral RNAs, increases plasmodesmal size exclusion limits, and suppresses RNA silencing. TGBp2 and TGBp3 are membrane-binding proteins. CP is required for genome encapsidation and forms ribonucleoprotein complexes along with TGBp1 and viral RNA. This review considers the functions of the TGB proteins, how they interact with each other and CP, and how silencing suppression might be linked to viral transport. A new model of the mechanism for Potexvirus transport is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号