首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for analyzing ligand–receptor binding kinetics is described, which is based on an engineered FC domain (FChk) that forms a covalent heterodimer. To validate the system, the type I IFN receptors (IFNAR1 and IFNAR2) were expressed as IFNAR1‐FChk, IFNAR2‐FCkh, and IFNAR1/IFNAR2‐FChk fusion proteins. Surface plasmon resonance (SPR) analysis of binary IFNα2a/IFNAR interactions confirmed prior affinity measurements, while the affinity of the IFNα2a/IFNAR1/IFNAR2‐FChk interaction reproduced the affinity of IFNα2a binding to living cells. In cellular assays, IFNAR1/IFNAR2‐FChk potently neutralized IFNα2a bioactivity with an inhibitory concentration equivalent to the KD measured by SPR. These studies suggest that FChk provides a simple reagent to evaluate the binding kinetics of multiple ligand–receptor signaling systems that control cell growth, development, and immunity.  相似文献   

2.
Type I interferons activate cellular responses by forming a ternary complex with two receptor components, IFNAR1 and IFNAR2. While the binding of the IFNAR2 receptor to interferon is of high affinity and well characterized, the binding to IFNAR1 is weak, transient, and poorly understood. Here, we mapped the complete binding region of IFNAR1 on IFNalpha2 by creating a panel of 21 single alanine mutant proteins, and determined their binding affinities. The IFNAR1 binding site on IFNalpha2 maps to the center of the B and C helices, opposite to the binding site for IFNAR2. No hot spots for binding were found in the interface, with individual mutations having an up to fivefold effect on binding. Of the nine residues that affected binding, three adjacent conserved residues, located on the B helix, conferred an increase in the binding affinity to IFNAR1, as well as an increase in the biological activity of the interferon mutant. This suggests that binding of alpha interferons to the IFNAR1 receptor is sub-optimal. A correlation between binding affinity and biological activity was found, albeit not across the whole range of affinities. In WISH cells, but not DAUDI cells, the anti-proliferative activity was markedly affected by fluctuations in the IFNalpha2 affinity towards the IFNAR1 receptor. On the other hand, the antiviral activity of interferons on WISH cells seems to change in accordance to the binding affinity towards IFNAR1 only as long as the binding affinity is not beyond twofold of the wild-type. In accordance, the biological roles of the two interferon-receptor subunits are discussed.  相似文献   

3.
《MABS-AUSTIN》2013,5(2):428-439
Anifrolumab (anifrolumab) is an antagonist human monoclonal antibody that targets interferon α receptor 1 (IFNAR1). Anifrolumab has been developed to treat autoimmune diseases and is currently in clinical trials. To decipher the molecular basis of its mechanism of action, we engaged in multiple epitope mapping approaches to determine how it interacts with IFNAR1 and antagonizes the receptor. We identified the epitope of anifrolumab using enzymatic fragmentation, phage-peptide library panning and mutagenesis approaches. Our studies revealed that anifrolumab recognizes the SD3 subdomain of IFNAR1 with the critical residue R279. Further, we solved the crystal structure of anifrolumab Fab to a resolution of 2.3 Å. Guided by our epitope mapping studies, we then used in silico protein docking of the anifrolumab Fab crystal structure to IFNAR1 and characterized the corresponding mode of binding. We find that anifrolumab sterically inhibits the binding of IFN ligands to IFNAR1, thus blocking the formation of the ternary IFN/IFNAR1/IFNAR2 signaling complex. This report provides the molecular basis for the mechanism of action of anifrolumab and may provide insights toward designing antibody therapies against IFNAR1.  相似文献   

4.
Anifrolumab (anifrolumab) is an antagonist human monoclonal antibody that targets interferon α receptor 1 (IFNAR1). Anifrolumab has been developed to treat autoimmune diseases and is currently in clinical trials. To decipher the molecular basis of its mechanism of action, we engaged in multiple epitope mapping approaches to determine how it interacts with IFNAR1 and antagonizes the receptor. We identified the epitope of anifrolumab using enzymatic fragmentation, phage-peptide library panning and mutagenesis approaches. Our studies revealed that anifrolumab recognizes the SD3 subdomain of IFNAR1 with the critical residue R279. Further, we solved the crystal structure of anifrolumab Fab to a resolution of 2.3 Å. Guided by our epitope mapping studies, we then used in silico protein docking of the anifrolumab Fab crystal structure to IFNAR1 and characterized the corresponding mode of binding. We find that anifrolumab sterically inhibits the binding of IFN ligands to IFNAR1, thus blocking the formation of the ternary IFN/IFNAR1/IFNAR2 signaling complex. This report provides the molecular basis for the mechanism of action of anifrolumab and may provide insights toward designing antibody therapies against IFNAR1.  相似文献   

5.
Srivastava A  Singh K  Modak MJ 《Biochemistry》2003,42(13):3645-3654
To identify the sites in the Klenow fragment of Escherichia coli DNA polymerase I that interact with the ssDNA overhang of the template strand in the pre-polymerase ternary complex, we carried out UV-mediated photo-cross-linking of the enzyme-DNA-dNTP ternary complex. The template strand contained a nine-nucleotide overhang and was radiolabeled at the 5'-end. Since the enzyme-TP-dNTP ternary complex but not the E-TP binary complex is stable at high ionic strengths, the cross-linking was carried out in the presence of 0.5 M NaCl. The cross-linked E-TP-dNTP complex was purified and subjected to trypsin digestion. The radiolabeled TP cross-linked peptide was further purified by DEAE-Sepharose and C18 column chromatography and subjected to amino acid sequencing. The release of radiolabeled DNA during each sequencing cycle was also monitored. The sequencing results as well as the radioactivity release pattern show that F771, contained in a peptide spanning amino acids 759-775 of pol I, is the unequivocal site of the template cross-linking. A qualitative assessment of the cross-linking efficiency of the template overhang containing a TT sequence at different positions in the ternary complex further suggests that the major cross-linking site within the template overhang is at the second and/or third nucleotide. An examination of the F771A mutant enzyme showed that it was able to form the E-TP binary as well as E-TP-dNTP ternary complex; however, it could not cross-link to the template-primer in the ternary complex. Furthermore, the ternary complex with F771A was qualitatively defective and exhibited some salt sensitivity. These results suggest that F771 participates in the stabilization of the pre-polymerase ternary complex.  相似文献   

6.
The molecular weight of the vasoactive intestinal peptide (VIP) receptor in rat lung and its interaction with the stimulatory guanine nucleotide-binding protein (Gs) were assessed by covalent cross-linking, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and immunological techniques. Studies with two cross-linking agents indicated that the VIP receptor in this tissue is a single polypeptide of Mr = 54,000. The VIP-occupied receptor could be cross-linked to neighboring proteins after detergent solubilization; higher molecular weight complexes of Mr = 114,000 and 184,000 were formed. Immunoblotting with antisera against G-protein subunits demonstrated that both complexes contained the alpha-subunit of Gs as well as the 125I-VIP cross-linked receptor whereas only the Mr = 184,000 complex contained the beta-subunit. Pretreatment with GTP reduced the prominence of these complexes, verifying the functional nature of this receptor-Gs association. Studies with a third cross-linking agent, ethylene glycol bis(succinimidyl succinate), provided direct evidence of physically associated, ternary VIP-receptor-Gs complexes actually in the membrane milieu. That these complexes were functionally associated with shown by their inhibition by anti-Gs alpha anti-serum. Since treatment of membranes with guanosine 5'-O-(3-thiotriphosphate) resulted in the separation of the VIP-cross-linked receptor from Gs such that no cross-linking could occur, we conclude that the binding of GTP analogs induces a conformational change in Gs in the membrane milieu.  相似文献   

7.
8.
We have studied the interactions between gelsolin and actin in crude extracts from activated and unactivated platelets and in mixtures of purified platelet gelsolin and muscle actin. Extracts were prepared using 10 mM EGTA from human platelets treated either with 100 microM aspirin and 2.5 mM tetracaine to retard activation or with the calcium ionophore A23187 to effect activation. The extracts were fractionated by gel filtration on Sephadex G-150 or by sedimentation on sucrose gradients and then analyzed using anti-gelsolin immunoblots and actin filament nucleation assays. The nucleation activity in both extracts was associated with gelsolin. The activity in the extracts from unactivated platelets sedimented with an S value of 5.2 and had an Mr = 90,000. The activity in the extracts prepared with EGTA from activated platelets sedimented at 6.8 S and had an Mr = 130,000. We have shown previously that the Mr = 130,000 species is an EGTA-stable binary complex of one actin and one gelsolin. Transient exposure of the extracts from unactivated platelets to 100 microM Ca2+ and subsequent fractionation in EGTA-containing buffers demonstrated that the formation of the binary complex occurs in the presence of Ca2+. Fractionation in the presence of 100 microM Ca2+ demonstrated higher order complexes including a ternary complex with a sedimentation constant of 8.2 S and an Mr = 165,000. Sedimentation and gel filtration experiments using purified platelet gelsolin and rabbit skeletal muscle actin demonstrated that formation of the EGTA-stable binary complex required Ca2+. At least one additional actin is bound to the binary complex in the presence of Ca2+, but is not sufficiently stable to be purified when EGTA is added. The results suggest that gelsolin exists either as a monomer or perhaps as a weak complex with actin in unactivated platelets but complexes tightly with actin during the transient Ca2+ rise that occurs during activation.  相似文献   

9.
Multimeric structure of the tumor necrosis factor receptor of HeLa cells   总被引:5,自引:0,他引:5  
The tumor necrosis factor (TNF) receptor of HeLa cells was solubilized in Triton X-100 and characterized by gel filtration, affinity labeling, and ligand blotting studies. Receptors solubilized with Triton X-100 eluted in gel filtration as a major peak of Mr = 330,000 and retained high affinity binding (KD = 0.25 nM). Affinity labeling of soluble receptor/125I-TNF complexes using the reversible, bifunctional bis[2-(succinimidooxycarbonyl-oxy)ethyl] sulfone resulted in the formation of cross-linked species of Mr = 310,000, 150,000-175,000, 95,000, and 75,000. The formation of these complexes was competitively inhibited by unlabeled TNF. Partial reversal of cross-linking in these complexes and their analysis by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) resolved 125I-TNF dimers cleaved from the 95,000 band and 125I-TNF monomer cleaved from the 75,000 band, providing evidence for a Mr approximately 60,000 subunit. In addition, the 95,000 and 75,000 bands were resolved as components of larger complexes (Mr = 150,000-175,000), which presumably contain two receptor subunits. The Mr 95,000 and 75,000 bands were also released from the Mr 310,000 complex by reduction with dithiothreitol, suggesting a role for disulfide bond stabilization. To investigate the association of the putative receptor subunits, Triton X-100 extracts from HeLa membranes were fractionated by SDS-PAGE without reduction and transferred electrophoretically to nylon membranes for TNF binding assays. Only two bands of Mr = 60,000 and 70,000 specifically bound TNF, and higher Mr binding activity was not observed. These results indicate that TNF receptors in HeLa cells are high molecular weight complexes containing Mr = 60,000 and 70,000 subunits each capable of binding TNF and that the complexes are primarily stabilized by non-covalent, hydrophobic interactions.  相似文献   

10.
Bifunctional cross-linking reagents DSP, DSS, and BSOCOES were used to cross-link 125I-surface-labeled viable T lymphocytes. The cross-linked cells were solubilized in Nonidet-P40, immunoprecipitated with anti-Ti (monoclonal antibody T40/25) or anti-T3 (monoclonal antibodies UCHT-1 or OKT3), and analyzed by SDS-PAGE. With all three cross-linkers, the intact cross-linked products obtained with monoclonal antibody T40/25 from HPB-ALL cells were 20-30 kd heavier than the Ti dimer (Mr 80,000). When the DSP cross-linked product was isolated using either anti-Ti or anti-T3 monoclonal antibodies and then cleaved, bands having molecular weights identical with both the Ti and T3 subunits were obtained. The two-dimensional SDS-PAGE analysis (nonreducing followed by reducing conditions) of the DSS and BSOCOES cross-linked products revealed the specifically cross-linked bands to have Mr 40,000 and Mr 28,000. These data indicate that the Ti molecule and the T3 molecule are spatially associated on the cell surface and suggest the predominant association is between the Ti beta subunit (Mr 40,000) and the T3 heavy subunit (Mr 28,000).  相似文献   

11.
Prostaglandin E2 (PGE2) specifically bound to 100,000 X g pellet prepared from bovine adrenal medulla, and [3H]PGE2-bound proteins were solubilized with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid. The dissociation of bound [3H]PGE2 from the proteins was enhanced by GTP. [3H]PGE2-specifically bound proteins were adsorbed onto a wheat germ agglutinin column and GTP treatment decreased the amount of [3H]PGE2 retained on the column. When [3H]PGE2-bound proteins were cross-linked in the membrane by dithiobis(succinimidyl propionate) and solubilized, bound [3H]PGE2 was no longer dissociated by GTP treatment, suggesting that cross-linking produced a stable and high-affinity complex of PGE receptor with a GTP-binding protein. Covalent cross-linking of the complex was attested by adsorption of dithiobis(succinimidyl propionate)-treated [3H]PGE2-bound proteins to GTP-Sepharose, and co-elution of [35S]guanosine 5'-O-(3-thiotriphosphate) binding activity and immunoreactivities of alpha o and beta subunits of a GTP-binding protein. The cross-linked [3H]PGE2-bound complex was eluted as an apparently single radioactive peak at the position of Mr = 200,000 by gel filtration. These results have demonstrated that PGE receptor is a glycoprotein with an approximate Mr of 110,000, assuming that the Mr of the GTP-binding protein is 90,000. PGE2 neither activated nor inhibited adenylate cyclase activity, and pertussis toxin (islet-activating protein) did not affect PGE2 binding and its GTP sensitivity. These results suggest that the PGE receptor may be functionally associated with a pertussis toxin-insensitive GTP-binding protein and is not coupled to the adenylate cyclase system in bovine adrenal medulla.  相似文献   

12.
The solubilization of somatostatin receptors from guinea-pig pancreas by different non-denaturing detergents was investigated after stabilization of the receptors by prior binding of 125I-[Tyr11]somatostatin or its analogue 125I-[Leu8,DTrp22,Tyr25]somatostatin 28, to pancreatic plasma membranes. The somatostatin-receptor complexes were solubilized in a high yield by Zwittergent 3-14 (3-[tetradecyldimethylammonio]-1-propanesulfonate), a zwitterionic detergent. Other detergents, digitonin, Triton X-100, Chaps (3-[cholamidopropyldimethylammonio]-1-propanesulfonate) and octyl beta-D-glycopyranoside, achieved only partial solubilization. The recovery of receptor complexes was increased by glycerol. In order to characterize solubilized somatostatin-receptor complexes, membranes receptors were covalently labelled using N-5-azido-2-nitrobenzoyloxysuccinimide as cross-linking reagent before solubilization. Gel filtration chromatography analysis resulted in the identification of a major protein component of apparent Mr = 93,000 which interacted with the two radioligands. In addition, a similar component of Mr = 88,000 was characterized after analysis by SDS-PAGE of membrane receptors covalently cross-linked with 125I-[Leu8,DTrp22,Tyr25]somatostatin 28 by different heterobifunctional reagents: N-5-azido-2-nitrobenzoyloxysuccinimide, N-hydroxysuccinimidyl 4-azidobenzoate, N-succinimidyl 6-(4'-azido-2'-nitrophenylamino)hexanoate. Optimal cross-linking results were obtained with N-5-azido-2-nitrobenzoyloxysuccinimide. The solubilized somatostatin-receptor complex was adsorbed to wheat-germ agglutinin-agarose column and eluted by specific sugars. We concluded that the guinea-pig pancreatic somatostatin receptor in the membrane and in the non-denaturing detergent solution behaves as a protein monomer of apparent Mr approximately 85,000-90,000. The somatostatin receptor is a glycoprotein which contains complex-type carbohydrate chains.  相似文献   

13.
The spatial relationship of the three polypeptides contained in the B800-850 light-harvesting complex of Rhodopseudomonas capsulata has been studied with chemical cross-linking of crude membrane preparations of the phototrophic negative mutant strain Y5. Samples were cross-linked with the cleavable reagent dithiobis (succinimidyl propionate) (1.1 nm chain length) and analyzed by two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis. Membranes labelled with 14C-amino acids were used to determine the compositional stoichiometry of cross-linked products. It was found that the two polypeptides with an apparent Mr of 8000 and 10 000, respectively, that are associated with the pigments bacteriochlorophyll a and carotenoid form homooligomers as well as heterooligomers. The data support the idea that these polypeptides are closely arranged in clusters probably containing at least four of each species. The third subunit with an Mr of 14 000, which is not associated with pigments, was found to be most susceptible to cross-linking and formed homooligomers but no heterooligomers with the other two subunits, and is thus likely to be loosely attached to these clusters. Comparative studies with the phototrophic positive wild type strain indicated that the results found with the phototrophic negative mutant strain Y5 reflect the organization of the B800-850 complex in the membrane of Rhodopseudomonas capsulata. Studies with the isolated B800-850 complex revealed that the sterical arrangement of the three constituent polypeptides in dodecyl dimethylamine-N-oxide containing solutions must be very similar to that in the membrane.  相似文献   

14.
The cross-linking of actin to myosin subfragment 1 (S-1) with 1-ethyl-3-[3-(dimethyl-amino)propyl]carbodiimide was reexamined by using two cross-linking procedures [Mornet, D., Bertrand, R., Pantel, P., Audemard, E., & Kassab, R. (1981) Nature (London) 292, 301-306; Sutoh, K. (1983) Biochemistry 22, 1579-1585] and two independent methods for quantitating the reaction products. In the first approach, the cross-linked acto-S-1 complexes were cleaved with elastase at the 25K/50K and 50K/22K junctions in S-1. This enabled direct measurements of the cross-linked and un-cross-linked fractions of the 50K and 22K fragments of S-1. We found that in all cases actin was preferentially cross-linked to the 22K fragment and that the overall stoichiometry of the main cross-linked products was that of a 1:1 complex of actin and S-1. In the second approach, actin was cross-linked to tryptically cleaved S-1, and the course of these reactions was monitored by measuring the decay of the free 50K and 20K fragments and the formation of cross-linked products. After selecting the optimal cross-linking procedure and conditions, we determined that the rate of actin cross-linking to the 20K fragment of S-1 was 3-fold faster than the reaction with the 50K peptide. The overall rate of cross-linking actin to S-1 corresponded to the sum of the individual reactions of the 50K and 20K fragments, indicating their mutually exclusive cross-linking to actin. Thus, the reactions with tryptically cleaved S-1 were consistent with the 1:1 stoichiometry of actin and S-1 in the main cross-linked products and verified the preferential cross-linking of actin to the 20K fragment of S-1. These results are discussed in the context of the binding of actin to S-1.  相似文献   

15.
Actobindin was previously shown to be an 88-residue polypeptide (Mr 9761) with an internal tandem repeat of 33-34 amino acids. Sedimentation equilibrium experiments have confirmed this Mr for native actobindin. Pyreneglyoxal-labeled actobindin had a similar Mr by sedimentation equilibrium analysis and bound to actin in a manner qualitatively similar to unmodified actobindin as determined by gel electrophoretic analysis of covalently cross-linked products. The stoichiometry of the actin-actobindin interaction was determined from the change in apparent Mr of pyrene-glyoxal-labeled actobindin in the presence of actin, as determined by scanning the ultracentrifuge cell at a wavelength that detected only the labeled protein. These data were consistent with the formation of a complex containing two actin and one actobindin molecules. The overall KD describing the binding of the first actin to either of the two sites on actobindin was 3.3 microM. The binding constant for the second actin suggested either negative cooperativity or inequality of the two actin-binding sites. Similar binding constants were obtained by analysis of the fluorescence enhancement that occurred when actobindin bound to actin labeled with either pyrene iodoacetamide or 4-(N-iodoacetoxyethyl-N-methyl)-7-nitrobenz-2-oxa-1,3-diazole. Cross-linking experiments with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide and N-hydroxy-sulfosuccinimide qualitatively agreed with predictions made from a two-binding site model. Additionally, both the fluorescence and cross-linking experiments suggested that the interaction of the two actin molecules may contribute to the stability of the heterotrimeric complex.  相似文献   

16.
Chen  Bangtao  Wang  Yuya  Pei  Xinyi  Wang  Sanyuan  Zhang  Hao  Peng  Yihong 《中国病毒学》2020,35(1):64-72
Enterovirus A71(EV-A71) is the major pathogen responsible for the severe hand, foot and mouth disease worldwide, for which few effective antiviral drugs are presently available. Interferon-a(IFN-a) has been used in antiviral therapy for decades; it has been reported that EV-A71 antagonizes the antiviral activity of IFN-a based on viral 2 Apro-mediated reduction of the interferon-alpha receptor 1(IFNAR1); however, the mechanism remains unknown. Here, we showed a significant increase in IFNAR1 protein induced by IFN-a in RD cells, whereas EV-A71 infection caused obvious downregulation of the IFNAR1 protein and blockage of IFN-a signaling. Subsequently, we observed that EV-A71 2 Apro inhibited IFNAR1 translation by cleavage of the eukaryotic initiation factor 4 GI(eIF4GI), without affecting IFNAR1 m RNA levels induced by IFN-a. The inhibition of IFNAR1 translation also occurred in puromycin-induced apoptotic cells when caspase-3 cleaved e IF4 GI. Importantly, we verified that 2 Aprocould activate cellular caspase-3, which was subsequently involved in e IF4 GI cleavage mediated by 2 Apro. Furthermore, inhibition of caspase-3 activation resulted in the partial restoration of IFNAR1 in cells transfected with 2 A or infected with EV-A71, suggesting the pivotal role of both viral 2 Aproand caspase-3 activation in the disturbance of IFN-a signaling. Collectively, we elucidate a novel mechanism by which cellular caspase-3 contributes to viral 2 Apro-mediated down-regulation of IFNAR1 at the translation level during EV-A71 infection, indicating that caspase-3 inhibition could be a potential complementary strategy to improve clinical anti-EV-A71 therapy with IFN-a.  相似文献   

17.
The receptor for human interferon-gamma (IFN-gamma) was purified from foreskin fibroblasts. Triton X-100 extracts obtained from either intact cells or membrane preparations were passed through an immobilized interferon-gamma column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of eluted fractions revealed a major band of Mr = 95,000 and minor bands of Mr = 80,000 and 60,000. Further purification was obtained by steric exclusion and by lectin chromatography. The purified receptor retained the ability to bind 125I-IFN-gamma with a Kd of 2.2 X 10(-10) M, a value close to that obtained with intact fibroblasts (5 X 10(-10) M). A complex of Mr = 105,000-125,000 was visualized by immunoprecipitation of 125I-IFN-gamma cross-linked to the purified receptor followed by SDS-PAGE and autoradiography. A similar complex was obtained when 125I-IFN-gamma was cross-linked to intact cells. Immunization of mice with the excised SDS-PAGE band of Mr = 95,000 elicited antibodies that blocked the antiviral activity of IFN-gamma and immunoprecipitated the cross-linked complex of 125I-IFN-gamma and its receptor.  相似文献   

18.
Insulin receptor, partially purified from human placenta by chromatography on wheat germ agglutinin, was shown, by means of double probe labeling, to bind only one molecule of insulin with a high affinity. In the double probe labeling protocol used, 125I-insulin (probe 1) was affinity cross-linked to its receptor in the presence of an excess of unlabeled N epsilon B29-biotinylinsulin (probe 2). The ability of succinylavidin to bind to receptor-linked probe 2 and alter the electrophoretic mobility of the cross-linked complex (during polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate) was used to determine the amount of receptor which was cross-linked to both probes relative to that which was cross-linked to only probe 1. The fraction of receptor bound to two molecules of insulin prior to cross-linking was estimated from the cross-linking efficiency and the yield of receptor cross-linked to both probes relative to the yield of receptor cross-linked only to probe 1. The low fraction of receptor bound to both probes in the presence of high concentrations of probe 2 indicated that the affinity of the receptor for a second molecule of insulin was approximately 100 times less than that for the first and that in the range of insulin concentrations (less than 20 nM) usually used to determine the stoichiometry for the interaction between receptor and insulin, more than 80% of the receptor molecules should be bound to only one molecule of insulin. This knowledge of how insulin receptor interacts with insulin was shown to be important for proper determination of receptor purity, interpretation of curvilinear Scatchard plots, and interpretation of the insulin-enhanced rate of dissociation of receptor-bound insulin.  相似文献   

19.
Bifunctional reagents 3,3'-dithiobis(succinimidyl propionate), 1-ethyl 3-(3-dimethylaminopropyl)carbodiimide and N-succinimidyl 3-(2-pyridyldithio)propionate have been used in an attempt to study molecular organization and covalent cross-linking of adrenodoxin reductase with adrenodoxin, the components of steroidogenic electron transfer system in bovine adrenocortical mitochondria. There was no cross-linking of individual proteins by the bifunctional reagents used, except for adrenodoxin cross-linking with water-soluble carbodiimide. Substantial cross-linking of adrenodoxin reductase with adrenodoxin was observed when water-soluble carbodiimide was used as cross-linking reagent. However, the cross-linked complex failed to transfer electrons. Significant amounts of the functional cross-linked complex (up to 42%) were observed when the proteins were cross-linked with N-succinimidyl 3-(2-pyridyldithio)propionate. Using gel filtration, ion-exchange chromatography and affinity chromatography on adrenodoxin-Sepharose, the complex was obtained in a highly purified form. In the presence of cytochrome P-450scc or cytochrome c, the cross-linked complex of adrenodoxin reductase with adrenodoxin was active in electron transfer from NADPH to heme proteins. The data obtained indicate that there are distinct binding sites on the adrenodoxin molecule responsible for the adrenodoxin reductase and cytochrome P-450scc binding, which suggests that steroidogenic electron transfer may be realized in an organized complex.  相似文献   

20.
Lactogenic receptors were analysed with the use of the cross-linking agent disuccinimidyl suberate to attach covalently 125I-labelled ovine prolactin or human growth hormone to binding sites from (1) liver from pregnant rats and (2) the rat-derived Nb2 lymphoma cell line. Analysis by SDS/polyacrylamide-gel electrophoresis of the proteins cross-linked to labelled hormone in rat liver indicated a major specifically-labelled complex with an Mr of 68,000-72,000, when run under reducing or non-reducing conditions. With Nb2 cells a major specifically-labelled complex with an Mr of 97,000-110,000 was identified, but only when electrophoresis was run using reducing conditions. Assuming one hormone molecule (Mr 22,000-24,000) per hormone-receptor complex, then the receptor proteins have an Mr of 44,000-50,000 for rat liver and 73,000-88,000 for the Nb2 cells. For both cell types the receptors were of lactogenic specificity; lactogenic hormones competed for binding whereas somatogenic hormones did not. These studies suggest that the lactogenic receptors in rat liver membranes and Nb2 cells differ in two respects. Firstly, the Mr of the labelled receptor protein in Nb2 cells is greater than that of the corresponding receptor protein in rat liver membranes; secondly, the Nb2 cell receptor appears to exist as a disulphide-linked oligomer whereas the receptor in rat liver membranes does not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号