首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The appreciation of protein phosphorylation as a ubiquitous mechanism for the post-translational control of protein function has drawn our attention to the phosphorylation of plasma membrane proteins. We have studied this phenomenon in the human erythrocyte and rat adipocyte, and have observed several features, common to the two systems, which may be of general significance. In examining protein phosphorylation in intact cells incubated with 32Pi, it is evident that the 32P-polypeptides of the plasma membrane are among the most highly labelled species in the cell, despite their minor contribution to overall protein content. The addition of epinephrine (to adipocytes) or cAMP (to erythrocytes) increases the phosphorylation of certain peptides, whereas others are unaffected. The protein kinases mediating these phosphorylations are present in the plasma membrane as isolated, and can be divided into two groups--cAMP dependent and cAMP independent. These two classes of kinase differ markedly in their substrate specificity toward endogenous and exogenous polypeptide substrates. Two classes of protein kinases with similar properties can be detected in the cytoplasm. The relationship between the membrane-bound and cytoplasmic enzymes is uncertain. The potential roles of the plasma membrane cAMP dependent protein kinases are evident from the diverse effects of cAMP on surface properties; however, the prevalence of plasma membrane proteins phosphorylated via cAMP independent pathways is striking. Thus, elucidation of the regulatory properties of the plasma membrane cAMP independent protein kinases may give new insight into the control of a variety of surface phenomena not mediated by cAMP.  相似文献   

2.
Summary Among other tubular elements obviously representing the endoplasmic reticulum, tubules carrying filaments with a diameter of about 4 m were found in negatively stained specimens of a variety of mammalian cell strains. They have been found in strains of epithelial and fibroblastic, normal and malignant, human and animal origin. So far, it is not possible to identify the filament-carrying tubules with equivalent structures in thin sections.  相似文献   

3.
4.
5.
6.
Methylated DNA-binding protein (MDBP) from human placenta recognizes specific DNA sequences containing 5-methylcytosine (m5C) residues. Comparisons of binding of various prokaryotic DNAs to MDBP indicate that m5CpG is present in the recognition sites for this protein but is only part of the recognition sequence. Specific binding to MDBP was observed for bacteriophage XP12 DNA, which naturally contains approximately 1/3 of its residues as m5C, and for Micrococcus luteus DNA, M13mp8 replicative form (RF) DNA, and pBR322 when these three DNAs were methylated at CpG sites by human DNA methyltransferase. Five DNA regions binding to MDBP have been localized by DNase I footprinting or restriction mapping in methylated pBR322 and M13mp8 RF DNAs. A comparison of their sequences reveals a common 5'-m5CGRm5CG-3' element or closely related sequence in which one of the m5C residues may be replaced by a T. In addition to this motif, one upstream and one downstream m5CpG as well as other common residues over an approximately 20-bp long region may be recognized by MDBP.  相似文献   

7.
G Weisinger  L Sachs 《The EMBO journal》1983,2(12):2103-2107
Macrophage and granulocyte-inducing (MGI) proteins regulate the growth and differentiation of myeloid hematopoietic cells. One class of these proteins (MGI-1) induces cell growth and another class (MGI-2) induces cell differentiation. Results obtained with DNA-cellulose column chromatography have shown that the differentiation-inducing protein MGI-2 can bind to double-stranded cellular DNA, but that there was no such binding under the same conditions by the growth-inducing protein MGI-1. DNA binding may thus be used to separate MGI-2 from MGI-1. The MGI-2 from mouse bound to DNA from mouse and calf. There were different elution peaks of the MGI-2 bound to DNA suggesting a heterogeneity of MGI-2 molecules, and the last peak eluted from the DNA cellulose column was enriched for one of the molecular forms of MGI-2. After one further step of purification by polyacrylamide gel electrophoresis, this molecular form of MGI-2 was active at a concentration of 6.5 X 10(-11) M. In normal development MGI-1 induces MGI-2. This induction of a DNA-binding differentiation-inducing protein by a growth-inducing protein is an efficient mechanism for the normal coupling of growth and differentiation. It is suggested that this may also be a mechanism for the normal coupling of growth and differentiation in other types of cells.  相似文献   

8.
We studied the effect of butyrate on cell cycle progression and polyploidization in three fibroblast (rat 3Y1, human IMR-90, and human embryo lung HEL) and two epithelial (human embryo kidney HEK and monkey kidney BSC-1) cells. In these cells, except for 3Y1, G1 arrest with butyrate was incomplete, and the production of tetraploid cells was detectable in the presence of butyrate. G2 arrest with butyrate was also incomplete in HEL and BSC-1 cells, and the number of HEL cells increased in the presence of butyrate. On the contrary, most BSC-1 cells that divided in the presence of butyrate were unstable and the number of attached cells decreased. These results indicate that the effect of butyrate on cell cycle progression varies with the cell type and that polyploidization can be induced by a single treatment with butyrate.  相似文献   

9.
Fibronectin (FN), a normal plasma and extracellular matrix glycoprotein, plays a significant role in various phases of wound healing. At wound site FN is synthesized locally by various cell types involved in the healing process (viz. epithelial, endothelial, fibroblast and macrophage cells) or deposited from the plasma. The present study was undertaken to investigate the in vitro effect of IFN on FN synthesis as well as release in the culture medium by various cell types. Indirect immunofluorescence and immunoelectron microscopy studies, using specific antibodies, revealed that IFN treatment resulted in significantly more staining for FN as compared to untreated control cells. Metabolic labeling with 35S-methionine, immunoprecipitation and SDS-page studies showed an increase in FN synthesis and release by IFN treated cells. In addition, to determine whether this increased synthesis was reflected at mRNA levels, poly (A)+ RNA was isolated from human lung epithelial cells (A549) and probed with FN specific cDNA. We found that IFN treatment increased the level of FN mRNA.  相似文献   

10.
A nuclear protein isolated from human placenta, methylated DNA-binding protein (MDBP), binds selectively to DNA enriched in 5-methylcytosine. We now demonstrate that MDBP is a sequence-specific, as well as methylation-specific, DNA-binding protein. From ten restriction fragments of pBR322 DNA methylated with human DNA methyltransferase, one was bound to MDBP very much more strongly than any of the others. For this preferential binding to MDBP, the DNA had to be methylated. By a DNase I protection experiment (DNase I footprinting), a 22-base sequence within this methylated restriction fragment was shown to be specifically protected by MDBP. The sequence-specificity of MDBP coupled with its dependence on DNA methylation suggests that this is one of the proteins which modulates important functions of human DNA methylation in vivo.  相似文献   

11.
12.
13.
DNA-binding proteins present in varicella-zoster virus-infected cells were identified by DNA-cellulose chromatography of radioactively labeled cell extracts. Seven virus-specific proteins, ranging in molecular weight from approximately 175,000 to 21,000, showed affinity for single- or double-stranded DNA or both. These proteins include the varicella-zoster virus major capsid protein, a phosphorylated tegument protein, and a 125,000-molecular-weight species which may be analogous to the major DNA-binding protein of herpes simplex virus. We also identified a number of DNA-binding phosphoproteins by these procedures. Finally, protein blot studies were carried out to determine whether these proteins bind preferentially to virus rather than to host cell DNA.  相似文献   

14.
The possible role of polyamines in the covalent modification of cellular protein(s) was investigated by studying the metabolic labeling of NB-15 mouse neuroblastoma cells by [14C]putrescine in fresh Dulbecco's medium followed by separation of cellular proteins through sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Under such incubation conditions, a single protein band with an apparent molecular weight of 18000 was radioactively labeled. [14C]Spermidine also specifically labeled this protein. The majority of the radioactivity covalently linked to the 18-kDa protein was recovered as hypusine. The radioactive labeling of this protein was stimulated 1.3-fold by 1 mM dibutyryl cAMP and 2.8-fold by 4% fetal calf serum. Fetal calf serum also stimulated the labeling of many other cellular proteins. This may be due to the conversion of putrescine to amino acids via the formation of gamma-aminobutyric acid. Aminoguanidine, a potent inhibitor of diamine oxidase, completely inhibited the fetal calf serum-stimulated labeling of these cellular proteins but had no effect on the labeling of the 18-kDa protein. The specific labeling of the 18-kDa protein by [14C]putrescine occurred in various mammalian cells examined including the N-18 mouse neuroblastoma cells, 3T3-L1 murine preadipocytes, and H-35 rat hepatoma cells. The specificity of labeling of the apparently ubiquitous 18-kDa protein and the stimulation of this labeling by fetal calf serum suggest that this protein may be important in mediating some of the actions of polyamines in cell growth regulation.  相似文献   

15.
Msbp-1 is a minisatellite-specific DNA-binding protein. Using synthetic binding substrates, we now show that Msbp-1 binds not to double-stranded DNA, but exclusively to single-stranded DNA. Binding is specific to the guanine-rich strand of the minisatellite duplex, interactions with the cytosine-rich strand being undetectable by southwestern analysis. Furthermore, the binding site required for successful DNA-protein interactions appears to be two or more minisatellite repeat units. We have also isolated, by whole-genome PCR and cloning, one Msbp-1 binding site from the human genome. Again, the binding strand of this molecule contains a repetitive G-rich structure equivalent to that of a small minisatellite. These observations are discussed with respect to other single-stranded DNA-binding proteins known to play a role in recombination processes.  相似文献   

16.
The intramuscular nerve branches of the masticatory muscles were investigated in different mammalian species such as Canis familiaris, Capreolus capreolus, Capra hircus africans, Bos primigenius forma taurus, Myocastor coypus MOLINA 1782, Sus scrofa domestica, Pan troglodytes, Homo sapiens. The ramifications of the nerves form a specific pattern that is adapted to the specialised muscle structures in all mammalian chewing type. The innervation pattern is fully consistent with the infrastructures of the muscles which are already fixed at birth. Differences between the ramification pattern in comparable muscles in different chewing types are only minor, not fundamental.  相似文献   

17.
Dopaminergic neurons of the central nervous system are mainly found in nuclei of the midbrain and the hypothalamus that provide subcortical and cortical targets with a rich and divergent innervation. Disturbance of signaling through this system underlies a variety of deteriorating conditions such as Parkinson's disease and schizophrenia. Although retinal dopaminergic signaling is largely independent of the above circuitry, malfunction of the retinal dopaminergic system has been associated with anomalies in visual adaptation and a number of retinal disorders. Dopamine (DA) is released mainly in a paracrine manner by a population of tyrosine hydroxylase expressing (TH+) amacrine cells (AC) of the mammalian retina; thus DA reaches virtually all retinal cell types by diffusion. Despite this paracrine release, however, the so called AII ACs have been considered as the main targets of DA signaling owing to a characteristic and robust ring‐like TH+ innervation to the soma/dendritic‐stalk area of AII cells. This apparent selectivity of TH+ innervation seems to contradict the divergent DAergic signaling scheme of other brain loci. In this study, however, we show evidence for intimate proximity between TH+ rings and somata of neurochemically identified non‐AII cells. We also show that this phenomenon is not species specific, as we observe it in popular mammalian animal models including the rabbit, the rat, and the mouse. Finally, our dataset suggests the existence of further, yet unidentified post‐synaptic targets of TH+ dendritic rings. Therefore, we hypothesize that TH+ ring‐like structures target the majority of ACs non‐selectively and that such contacts are wide‐spread among mammals. Therefore, this new view of inner retinal TH+ innervation resembles the divergent DAergic innervation of other brain areas through the mesolimbic, mesocortical, and mesostriatal signaling streams.

  相似文献   


18.
The vascular and parenchymal amyloid deposits in Alzheimer disease (AD), normal aging and Down syndrome are mainly composed of a 4 kDa polypeptide (A4), which derives from a larger precursor protein (APP). There is evidence that APP is a transmembrane glycoprotein present in most tissues, but the characteristics of APP in intact cells are not yet known. In order to investigate this issue, we examined the immunoreactivity of fibroblasts of human and nonhuman cell lines with antisera raised to synthetic peptides corresponding to A4 and to two other domains of the APP. All three antisera recognized a 130 kDa polypeptide (APP-130) in immunoblots from all cell lines. In fibroblasts, an additional polypeptide of 228 kDa (APP-228) was recognized by the antiserum to A4. In immunoblots of two dimensional gels, APP-130 showed a pI of 6.2, while APP-228 failed to focus in the pH range of 4.7-7.0. Sequential extractions of cells with buffer and with Triton X-100 indicate that APP-130 is extractable with nonionic detergents at high ionic strength, whereas 228 kDa APP is a cystolic component. Immunofluorescence staining is consistent with an intracellular perinuclear and plasma membrane localization. It is concluded that APP-130 and APP-228 are two forms of the APP which result from extensive posttranslational modifications of a smaller original gene product. It is likely that APP undergoes similar posttranslational modifications in different cell types.  相似文献   

19.
When myo-[3H]inositol-prelabelled primary-cultured murine bone-marrow-derived macrophages were challenged with platelet-activating factor (PAF; 200 ng/ml), there was a rapid (2.5-fold at 10 s) rise in the intracellular concentration of D-myo-[3H]inositol 1,4,5-trisphosphate, followed by a rise in myo-[3H]inositol tetrakisphosphate. myo-[3H]Inositol tetrakisphosphate fractions were isolated by high-performance anion-exchange chromatography from myo-[3H]inositol-prelabelled chick erythrocytes and primary-cultured macrophages. In both cases [3H]iditol and [3H]inositol were the only significant products (greater than 90% of recovered radioactivity) after oxidation to completion with periodic acid, reduction with NaBH4 and dephosphorylation with alkaline phosphatase. The presence of [3H]inositol after this procedure is consistent with the occurrence of [3H]inositol 1,3,4,5-tetrakisphosphate in the cell extracts, whereas [3H]iditol could only be derived from D- or L-inositol 1,4,5,6-tetrakisphosphate. When [3H]inositol tetrakisphosphate fractions obtained from (A) unstimulated macrophages, (B) macrophages that had been stimulated with PAF for 40s or (C) chick erythrocytes were subjected to the above procedure, radioactivity was recovered in these polyols in the following proportions: A, 60-90% in iditol, with 10-40% in inositol; B, total radioactivity increased by a factor of 9.8, 94% being recovered in inositol and 8% in iditol; C, 70-80% in iditol and 20-30% in inositol. [3H]Iditol derived from myo-[3H]inositol tetrakisphosphate fractions from macrophages and chick erythrocytes was oxidized to sorbose by L-iditol dehydrogenase (L-iditol:NAD+2-oxidoreductase, 1.1.1.14) at the same rate as authentic L-iditol. D-[14C]Iditol, derived from D-myo-inositol 1,4,5-trisphosphate, was not oxidized by L-iditol dehydrogenase. This result indicates that the [3H]iditol was derived from L-myo-inositol inositol 1,4,5,6-tetrakisphosphate. The data are consistent with rapid PAF-sensitive synthesis of D-myo-[3H]inositol 1,3,4,5-tetrakisphosphate in macrophages, and demonstrate that L-myo-inositol 1,4,5,6-tetrakisphosphate is synthesized in both mammalian and avian cells. The levels of L-myo-[3H]inositol 1,4,5,6-tetrakisphosphate in primary-cultured macrophages are not acutely sensitive to PAF.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号