首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new amphipathy scales elaborated from molecular dynamics data are presented. Their applications contribute for the identification of the hydrophobic or hydrophilic regions in proteins solely from the primary structure. The new amphipathy coefficients (AC) reflect the side chain/solvent molecules configurational energies. A polar (water) and an apolar solvent, CCl4, were used resulting in the two ACwater and ACCCl4 scales. These solvents were chosen to simulate the aqueous phases and the transmembrane ambients of cellular membranes where the membrane proteins act. The new amphipathy scales were compared with some previous scales determined by different methods, which were also compared between them, indicating more than 90% of the correlation coefficients are less than 0.9: the scales are strictly dependent on the methodologies used in their determination. The ACCCl4 scale is related with the size of side chain amino acids while ACwater is related with the hydrophobicity of side chain amino acids. The quality of the scales was confirmed by an example of application where ACwater was able to identify correctly the transmembrane, hydrophobic regions of a membrane protein. These results also indicate that water is an important factor responsible for the tertiary structure of membrane proteins.  相似文献   

2.
We recently developed an amphipathy scale, elaborated from molecular dynamics data that can be used for the identification of hydrophobic or hydrophilic regions in proteins. This amphipathy scale reflects side chain/water molecule interaction energies. We have now used this amphipathy scale to find candidates for transmembrane segments, by examining a large sample of membrane proteins with alpha-helix segments. The candidates were selected based on an amphipathy coefficient value range and the minimum number of residues in a segment. We compared our results with the transmembrane segments previously identified in the PDB_TM database by the TMDET algorithm. We expected that the hydrophobic segments would be identified using only the primary structures of the proteins and the amphipathy scale. However, some of these hydrophobic segments may pertain to hydrophobic pockets not included in transmembrane regions. We found that our amphipathy scale could identify alpha-helix transmembrane regions with a probability of success of 76% when all segments were included and 90% when all membrane proteins were included.  相似文献   

3.
4.
Understanding the solvation of amino acids in biomembranes is an important step to better explain membrane protein folding. Several experimental studies have shown that polar residues are both common and important in transmembrane segments, which means they have to be solvated in the hydrophobic membrane, at least until helices have aggregated to form integral proteins. In this work, we have used computer simulations to unravel these interactions on the atomic level, and classify intramembrane solvation properties of amino acids. Simulations have been performed for systematic mutations in poly-Leu helices, including not only each amino acid type, but also every z-position in a model helix. Interestingly, many polar or charged residues do not desolvate completely, but rather retain hydration by snorkeling or pulling in water/headgroups--even to the extent where many of them exist in a microscopic polar environment, with hydration levels corresponding well to experimental hydrophobicity scales. This suggests that even for polar/charged residues a large part of solvation cost is due to entropy, not enthalpy loss. Both hydration level and hydrogen bonding exhibit clear position-dependence. Basic side chains cause much less membrane distortion than acidic, since they are able to form hydrogen bonds with carbonyl groups instead of water or headgroups. This preference is supported by sequence statistics, where basic residues have increased relative occurrence at carbonyl z-coordinates. Snorkeling effects and N-/C-terminal orientation bias are directly observed, which significantly reduces the effective thickness of the hydrophobic core. Aromatic side chains intercalate efficiently with lipid chains (improving Trp/Tyr anchoring to the interface) and Ser/Thr residues are stabilized by hydroxyl groups sharing hydrogen bonds to backbone oxygens.  相似文献   

5.
Solid state (2)H NMR spectroscopy was employed to study peptides related to the transmembrane domain of the human epidermal growth factor receptor, for insight into the interaction of its cytoplasmic juxtamembrane domain with the membrane surface. Since such receptors have clusters of (+)charged amino acids in this region, the effect of (-)charged phosphatidylserine at the concentration found naturally in the cytoplasmic leaflet (15 mol%) was considered. Each peptide contained 34 amino acids, which included the hydrophobic 23 amino acid stretch thought to span the membrane and a ten amino acid segment beyond the 'cytoplasmic' surface. Non-perturbing deuterium probe nuclei were located within alanine side chains in intramembranous and extramembranous portions. (2)H NMR spectra were recorded at 35 degrees C and 65 degrees C in fluid lipid bilayers consisting of (zwitterionic) 1-palmitoyl-2-oleoylphosphatidylcholine, with and without 15 mol% (anionic) phosphatidylserine. The cationic extramembranous portion of the receptor backbone was found to be highly rotationally mobile on a time scale of 10(-4)-10(-5) s in both types of membrane - as was the alpha-helical intramembranous portion. Deuterium nuclei in alanine side chains (-CD(3)) detected modest changes in peptide backbone orientation and/or dynamics related to the presence of 1-stearoyl-2-oleoylphosphatidylserine: in the case of the extramembranous portion of the peptide these seemed related to lipid charge. Temperature effects on the peptide backbone external to the membrane were qualitatively different from effects on the helical transmembrane domain - likely reflecting the different physical constraints on these peptide regions and the greater flexibility of the extramembranous domain. Effects related to lipid charge could be detected in the spectrum of CD(3) groups on the internally mobile side chain of Val(650), six residues beyond the membrane surface.  相似文献   

6.
The evolutionary adaptations of thermophilic water‐soluble proteins required for maintaining stability at high temperature have been extensively investigated. Little is known about the adaptations in membrane proteins, however. Here, we compare many properties of mesophilic and thermophilic membrane protein structures, including side‐chain burial, packing, hydrogen bonding, transmembrane kinks, loop lengths, hydrophobicity, and other sequence features. Most of these properties are quite similar between mesophiles and thermophiles although we observe a slight increase in side‐chain burial and possibly a slight decrease in the frequency of transmembrane kinks in thermophilic membrane protein structures. The most striking difference is the increased hydrophobicity of thermophilic transmembrane helices, possibly reflecting more stringent hydrophobicity requirements for membrane partitioning at high temperature. In agreement with prior work examining transmembrane sequences, we find that thermophiles have an increase in small residues (Gly, Ala, Ser, and Val) and a strong suppression of Cys. We also find a relative dearth of most strongly polar residues (Asp, Asn, Glu, Gln, and Arg). These results suggest that in thermophiles, there is significant evolutionary pressure to offload destabilizing polar amino acids, to decrease the entropy cost of side chain burial, and to eliminate thermally sensitive amino acids.  相似文献   

7.
Leukotrienes (LTs) are fatty acid derivatives formed by oxygenation of arachidonic acid via the 5-lipoxygenase (5-LO) pathway. Upon activation of inflammatory cells 5-LO is translocated to the nuclear envelope (NE) where it converts arachidonic acid to the unstable epoxide LTA4. LTA4 is further converted to LTC4 by conjugation with glutathione, a reaction catalyzed by the integral membrane protein LTC4 synthase (LTC4S), which is localized on the NE and endoplasmic reticulum (ER). We now report the mapping of regions of LTC4S that are important for its subcellular localization. Multiple constructs encoding fusion proteins of green fluorescent protein (GFP) as the N-terminal part and various truncated variants of human LTC4S as C-terminal part were prepared and transfected into HEK 293/T or COS-7 cells. Constructs encoding hydrophobic region 1 of LTC4S (amino acids 6-27) did not give distinct membrane localized fluorescence. In contrast hydrophobic region 2 (amino acids 60-89) gave a localization pattern similar to that of full length LTC4S. Hydrophobic region 3 (amino acids 114-135) directed GFP to a localization indistinguishable from that of full length LTC4S. A minimal directing sequence, amino acids 117-132, was identified by further truncation. The involvement of the hydrophobic regions in the homo-oligomerization of LTC4S was investigated using bioluminescence resonance energy transfer (BRET) analysis in living cells. BRET data showed that hydrophobic regions 1 and 3 each allowed oligomerization to occur. These regions most likely form transmembrane helices, suggesting that homo-oligomerization of LTC4S is due to helix-helix interactions in the membrane.  相似文献   

8.
Charged and polar amino acids in the transmembrane domains of integral membrane proteins can be crucial for protein function and also promote helix-helix association or protein oligomerization. Yet, our current understanding is still limited on how these hydrophilic amino acids are efficiently translocated from the Sec61/SecY translocon into the cell membrane during the biogenesis of membrane proteins. In hepatitis C virus, the putative transmembrane segments of envelope glycoproteins E1 and E2 were suggested to heterodimerize via a Lys-Asp ion-pair in the host endoplasmic reticulum. Therefore in this work, we carried out molecular dynamic simulations in explicit lipid bilayer and solvent environment to explore the stability of all possible bridging ion-pairs using the model of H-segment helix dimers. We observed that, frequently, several water molecules penetrated from the interface into the membrane core to stabilize the charged and polar pairs. The hydration time and amount of water molecules in the membrane core depended on the position of the charged residues as well as on the type of ion-pairs. Similar microsolvation events were observed in simulations of the putative E1-E2 transmembrane helix dimers. Simulations of helix monomers from other members of the Flaviviridae family suggest that these systems show similar behaviors. Thus this study illustrates the important contribution of water microsolvation to overcome the unfavorable energetic cost of burying charged and polar amino acids in membrane lipid bilayers. Also, it emphasizes the novel role of bridging charged or polar interactions stabilized by water molecules in the hydrophobic lipid bilayer core that has an important biological function for helix dimerization in several envelope glycoproteins from the family of Flaviviridae viruses.  相似文献   

9.
Recent advances in determination of the high-resolution structure of membrane proteins now enable analysis of the main features of amino acids in transmembrane (TM) segments in comparison with amino acids in water-soluble helices. In this work, we conducted a large-scale analysis of the prevalent locations of amino acids by using a data set of 170 structures of integral membrane proteins obtained from the MPtopo database and 930 structures of water-soluble helical proteins obtained from the protein data bank. Large hydrophobic amino acids (Leu, Val, Ile, and Phe) plus Gly were clearly prevalent in TM helices whereas polar amino acids (Glu, Lys, Asp, Arg, and Gln) were less frequent in this type of helix. The distribution of amino acids along TM helices was also examined. As expected, hydrophobic and slightly polar amino acids are commonly found in the hydrophobic core of the membrane whereas aromatic (Trp and Tyr), Pro, and the hydrophilic amino acids (Asn, His, and Gln) occur more frequently in the interface regions. Charged amino acids are also statistically prevalent outside the hydrophobic core of the membrane, and whereas acidic amino acids are frequently found at both cytoplasmic and extra-cytoplasmic interfaces, basic amino acids cluster at the cytoplasmic interface. These results strongly support the experimentally demonstrated biased distribution of positively charged amino acids (that is, the so-called the positive-inside rule) with structural data.  相似文献   

10.
Using a model protein with a 40 residue hydrophobic transmembrane segment, we have measured the ability of all the 20 naturally occurring amino acids to form a tight turn when placed in the middle of the hydrophobic segment. Turn propensities in a transmembrane helix are found to be markedly different from those of globular proteins, and in most cases correlate closely with the hydrophobicity of the residue. The turn propensity scale may be used to improve current methods for membrane protein topology prediction.  相似文献   

11.
Site-directed oligonucleotide mutagenesis has been used to introduce chain termination codons into the cloned DNA sequences encoding the carboxy-terminal transmembrane (27 amino acids) and cytoplasmic (10 amino acids) domains of influenza virus hemagglutinin (HA). Four mutant genes were constructed which express truncated forms of HA that lack the cytoplasmic domain and terminate at amino acids 9, 14, 17, or 27 of the wild-type hydrophobic domain. Analysis of the biosynthesis and intracellular transport of these mutants shows that the cytoplasmic tail is not needed for the efficient transport of HA to the cell surface; the stop-transfer sequences are located in the hydrophobic domain; 17 hydrophobic amino acids are sufficient to anchor HA stably in the membrane; and mutant proteins with truncated hydrophobic domains show drastic alterations in transport, membrane association, and stability.  相似文献   

12.
In contrast to water-soluble proteins, membrane proteins reside in a heterogeneous environment, and their surfaces must interact with both polar and apolar membrane regions. As a consequence, the composition of membrane proteins' residues varies substantially between the membrane core and the interfacial regions. The amino acid compositions of helical membrane proteins are also known to be different on the cytoplasmic and extracellular sides of the membrane. Here we report that in the 16 transmembrane beta-barrel structures, the amino acid compositions of lipid-facing residues are different near the N and C termini of the individual strands. Polar amino acids are more prevalent near the C termini than near the N termini, and hydrophobic amino acids show the opposite trend. We suggest that this difference arises because it is easier for polar atoms to escape from the apolar regions of the bilayer at the C terminus of a beta-strand. This new characteristic of beta-barrel membrane proteins enhances our understanding of how a sequence encodes a membrane protein structure and should prove useful in identifying and predicting the structures of trans-membrane beta-barrels.  相似文献   

13.
The structure of membrane proteins specifies their functional properties, which are important for medicine and pharmacology and, therefore, is of significant interest. The repetition of transmembrane regions that consist of hydrophobic amino acids is a characteristic and organic feature of polytopic membrane proteins. The ordered repetition (periodicity) can be detected by the Fourier method applied to a digital image of the symbolic amino acid sequence of a protein. In the present work, this investigation was carried out for 24 transmembrane proteins (successfully for 14 of them). If the repetition of transmembrane regions is aperiodic, it can be revealed by another method, that is, the method of the reiterated (four to five times) averaging of the protein hydrophobicity function in a window within the limits of 9–11 amino acids that moves along the sequence. This novel method was applied to the 24 transmembrane proteins (successfully for 19 of them) and demonstrated higher suitability than the Fourier method for predicting the secondary structure of these proteins and the corresponding functional properties.  相似文献   

14.
Punta M  Maritan A 《Proteins》2003,50(1):114-121
In this article, a membrane-propensity scale for amino acids is derived using only two ingredients: (i) a set of transmembrane helices segments from membrane protein crystal structures and (ii) the request that each component of the set has a free energy lower than that of a typical soluble protein sequence of the same length. Although the most widely used hydropathy scales satisfy this request, we use an optimization procedure that allows for extraction of an optimal scale, which correlates equally well with those scales. We show that, if the choice of the sequence database is accurate, significant knowledge-based scales, which are robust with respect to changes in the learning set, can be easily derived. The obtained scales can be used for transmembrane helices prediction. The predictive power of one of these scales is tested on membrane proteins, soluble proteins, and signal peptides databases, finding that its performances is comparable with those of the hydropathy scales.  相似文献   

15.
Most membrane proteins contain a transmembrane (TM) domain made up of a bundle of lipid-bilayer-spanning α-helices. TM α-helices are generally composed of a core of largely hydrophobic amino acids, with basic and aromatic amino acids at each end of the helix forming interactions with the lipid headgroups and water. In contrast, the S4 helix of ion channel voltage sensor (VS) domains contains four or five basic (largely arginine) side chains along its length and yet adopts a TM orientation as part of an independently stable VS domain. Multiscale molecular dynamics simulations are used to explore how a charged TM S4 α-helix may be stabilized in a lipid bilayer, which is of relevance in the context of mechanisms of translocon-mediated insertion of S4. Free-energy profiles for insertion of the S4 helix into a phospholipid bilayer suggest that it is thermodynamically favorable for S4 to insert from water to the center of the membrane, where the helix adopts a TM orientation. This is consistent with crystal structures of Kv channels, biophysical studies of isolated VS domains in lipid bilayers, and studies of translocon-mediated S4 helix insertion. Decomposition of the free-energy profiles reveals the underlying physical basis for TM stability, whereby the preference of the hydrophobic residues of S4 to enter the bilayer dominates over the free-energy penalty for inserting charged residues, accompanied by local distortion of the bilayer and penetration of waters. We show that the unique combination of charged and hydrophobic residues in S4 allows it to insert stably into the membrane.  相似文献   

16.
Direct physical chemistry measurements of the hydrophobicity of amino acids or their derivatives have often been used to estimate the propensity of amino acids to participate in transmembrane helices. In this short note, it is found that there is a very high degree of correlation (r = 0.944–0.965) between an average physical chemistry hydrophobicity scale (an average of scales derived, e.g., from the solubility of amino acid derivatives in organic solvents versus water or their binding to hydrophobic particles) and the statistically based transmembrane tendency scale (derived from the relative abundance of residues in known transmembrane and soluble protein sequences (Zhao and London, Protein Sci 15:1987–2001, 2006)). This correlation indicates that, other than hydrophobicity, amino acid properties/interactions that promote or inhibit transmembrane helix formation in a specific membrane protein largely cancel out when averaged over all transmembrane sequences. In other words, other than hydrophobicity, there are no properties of a specific amino acid residue within a hydrophobic segment that have a strong systematic effect upon transmembrane helix formation independent of the remainder of the sequence in that hydrophobic segment. However, proline is an exception to this rule.  相似文献   

17.
The recognition of transmembrane helices by the translocon is primarily guided by the average hydrophobicity of the potential transmembrane helix. However, the exact hydrophobicity of each amino acid can be identified in several different ways. The free energy of transfer for amino acid analogues between a hydrophobic media, for example, octanol and water can be measured or obtained from simulations, the hydrophobicity can also be estimated by statistical properties from known transmembrane segments and finally the contribution of each amino acid type for the probability of translocon recognition has recently been measured directly. Although these scales correlate quite well, there are clear differences between them and it is not well understood which scale represents neither the biology best nor what the differences are. Here, we try to provide some answers to this by studying the ability of different scales to recognize transmembrane helices and predict the topology of transmembrane proteins. From this analysis it is clear that the biological hydrophobicity scale as well scales created from statistical analysis of membrane helices perform better than earlier experimental scales that are mainly based on measurements of amino acid analogs and not directly on transmembrane helix recognition. Using these results we identified the properties of the scales that perform better than other scales. We find, for instance, that the better performing scales consider proline more hydrophilic. This shows that transmembrane recognition is not only governed by pure hydrophobicity but also by the helix preferences for amino acids, as proline is a strong helix breaker. Proteins 2014; 82:2190–2198. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
Adamian L  Nanda V  DeGrado WF  Liang J 《Proteins》2005,59(3):496-509
Characterizing the interactions between amino acid residues and lipid molecules is important for understanding the assembly of transmembrane helices and for studying membrane protein folding. In this study we develop TMLIP (TransMembrane helix-LIPid), an empirically derived propensity of individual residue types to face lipid membrane based on statistical analysis of high-resolution structures of membrane proteins. Lipid accessibilities of amino acid residues within the transmembrane (TM) region of 29 structures of helical membrane proteins are studied with a spherical probe of radius of 1.9 A. Our results show that there are characteristic preferences for residues to face the headgroup region and the hydrocarbon core region of lipid membrane. Amino acid residues Lys, Arg, Trp, Phe, and Leu are often found exposed at the headgroup regions of the membrane, where they have high propensity to face phospholipid headgroups and glycerol backbones. In the hydrocarbon core region, the strongest preference for interacting with lipids is observed for Ile, Leu, Phe and Val. Small and polar amino acid residues are usually buried inside helical bundles and are strongly lipophobic. There is a strong correlation between various hydrophobicity scales and the propensity of a given residue to face the lipids in the hydrocarbon region of the bilayer. Our data suggest a possibly significant contribution of the lipophobic effect to the folding of membrane proteins. This study shows that membrane proteins have exceedingly apolar exteriors rather than highly polar interiors. Prediction of lipid-facing surfaces of boundary helices using TMLIP1 results in a 54% accuracy, which is significantly better than random (25% accuracy). We also compare performance of TMLIP with another lipid propensity scale, kPROT, and with several hydrophobicity scales using hydrophobic moment analysis.  相似文献   

19.
《Proteins》2018,86(5):581-591
We compare side chain prediction and packing of core and non‐core regions of soluble proteins, protein‐protein interfaces, and transmembrane proteins. We first identified or created comparable databases of high‐resolution crystal structures of these 3 protein classes. We show that the solvent‐inaccessible cores of the 3 classes of proteins are equally densely packed. As a result, the side chains of core residues at protein‐protein interfaces and in the membrane‐exposed regions of transmembrane proteins can be predicted by the hard‐sphere plus stereochemical constraint model with the same high prediction accuracies (>90%) as core residues in soluble proteins. We also find that for all 3 classes of proteins, as one moves away from the solvent‐inaccessible core, the packing fraction decreases as the solvent accessibility increases. However, the side chain predictability remains high (80% within ) up to a relative solvent accessibility, , for all 3 protein classes. Our results show that % of the interface regions in protein complexes are “core”, that is, densely packed with side chain conformations that can be accurately predicted using the hard‐sphere model. We propose packing fraction as a metric that can be used to distinguish real protein‐protein interactions from designed, non‐binding, decoys. Our results also show that cores of membrane proteins are the same as cores of soluble proteins. Thus, the computational methods we are developing for the analysis of the effect of hydrophobic core mutations in soluble proteins will be equally applicable to analyses of mutations in membrane proteins.  相似文献   

20.
Tryptophan (Trp) is abundant in membrane proteins, preferentially residing near the lipid–water interface where it is thought to play a significant anchoring role. Using a total of 3 μs of molecular dynamics simulations for a library of hydrophobic WALP-like peptides, a long poly-Leu α-helix, and the methyl-indole analog, we explore the thermodynamics of the Trp movement in membranes that governs the stability and orientation of transmembrane protein segments. We examine the dominant hydrogen-bonding interactions between the Trp and lipid carbonyl and phosphate moieties, cation–π interactions to lipid choline moieties, and elucidate the contributions to the thermodynamics that serve to localize the Trp, by ~ 4 kcal/mol, near the membrane glycerol backbone region. We show a striking similarity between the free energy to move an isolated Trp side chain to that found from a wide range of WALP peptides, suggesting that the location of this side chain is nearly independent of the host transmembrane segment. Our calculations provide quantitative measures that explain Trp's role as a modulator of responses to hydrophobic mismatch, providing a deeper understanding of how lipid composition may control a range of membrane active peptides and proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号