首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Action of noradrenaline and histamine on the resting potential, membrane resistance and contractility of rabbit pulmonary artery muscle cells was investigated in normal and Ca-blockers (manganese and verapamil)-containing Ringer-Lock solutions. It was shown that catecholamine and histamine induced depolarization by different mechanisms. Thus, noradrenaline action is accounted for by the decreased membrane permeability to potassium ions, while the histamine-induced depolarization is a consequence of sodium and, probably, chlorine permeability. The contraction induced by the transmitters is activated primarily by the extracellular calcium ions entering the cells by two ways: via chemosensitive Ca-channels activated by adrenergic and histaminergic receptors or via potential-dependent slow Ca-channels activated by the transmitter-induced membrane depolarization. It is not excluded that during activation of muscle cells by the transmitters part of calcium is release from both intramembrane and intracellular stores.  相似文献   

2.
王阿敬  李之望 《生理学报》1989,41(2):145-152
本文应用细胞内记录方法,对去甲肾上腺素(NA)引起蟾蜍背根神经节(DRG)神经细胞膜电位去极化或超极化反应时的膜电导及翻转电位值进行了测量,并观察了钾和钙离子通道阻断剂灌流DRG对NA引起膜电位反应的影响。当NA引起去极化反应时,15个细胞的膜电导减小32.6%。少数细胞膜电导开始增加,继而减小(n=4)。NA超极化反应时膜电导增加13.2%(n=8)。NA去极化反应的翻转电位值为-88.5±0.9mV((?)±SE,n=4),NA超极化反应在膜电位处于-89至-92mV时消失。 钾通道阻断剂四乙铵可使NA去极化幅值增加73.7±11.9%((?)±SE,n=7),并使NA超极化幅值减小40.5%(n=4)。细胞内注入氯化铯使苯肾上腺素去极化幅值增加34.5%(n=4)。钙通道阻断剂氯化锰使NA去极化及超极化反应分别减小50.5±9.9%((?)±SE,n=10)和89.5±4.9%((?)±SE,n=7)。结果提示,NA引起DRG神经细胞膜电位的去极化或超极化反应,可能与膜的钾及钙通道活动的改变有关。  相似文献   

3.
The effect of a calcium channel blocker, e.g. verapamil, on the contractions produced by high potassium (K+) and noradrenalne (NA), was studied in the isolated saphenous vein in man. The aim of the present experiments was to see which of the two types of contractions was more sensitive to blockade by a calcium channel blocker, e.g. verapamil, and if verapamil had a differential effect on KCl and NA, whether this could be interpreted in terms of the presence of two calcium activation mechanisms in human saphenous vein. The results of the present investigation showed that KCl and NA contracted whereas verapamil relaxed the human saphenous vein. NA produced larger contraction (3.4 g tension) than did KCl (1.3 g tension). Lowering the calcium concentration in the external medium, from 2.5 mM to 1 mM, resulted in a reduced contraction in both NA and KCl responses, indicating dependence on influx of calcium. However, verapamil (1 microM) produced greater reduction in the KCl than NA-induced contraction, indicating that the NA contraction may involve additional mechanism, i.e. dependence on the release of calcium from intracellular Ca2+ stores. These results are in favour of the suggestion that the KCl-induced contraction was due to depolarization and voltage-dependent activation of calcium channels, whereas the NA-induced contraction was due to both depolarization and receptor-activation of the calcium channels, the latter being less sensitive to calcium channel blockers, e.g. verapamil. Thus, the KCl and NA-induced contractions in human saphenous vein may be due to two different calcium activation mechanisms; one is more sensitive (KCl) than the other (NA) to the presence of the calcium antagonist, verapamil.  相似文献   

4.
Histamine is an inflammatory mediator present in mast cells, which are abundant in the wall of the gallbladder. We examined the electrical properties of gallbladder smooth muscle and nerve associated with histamine-induced changes in gallbladder tone. Recordings were made from gallbladder smooth muscle and neurons, and responses to histamine and receptor subtype-specific compounds were tested. Histamine application to intact smooth muscle produced a concentration-dependent membrane depolarization and increased excitability. In the presence of the H(2) antagonist ranitidine, the response to histamine was potentiated. Activation of H(2) receptors caused membrane hyperpolarization and elimination of spontaneous action potentials. The H(2) response was attenuated by the ATP-sensitive K(+) (K(ATP)) channel blocker glibenclamide in intact and isolated smooth muscle. Histamine had no effect on the resting membrane potential or excitability of gallbladder neurons. Furthermore, neither histamine nor the H(3) agonist R-alpha-methylhistamine altered the amplitude of the fast excitatory postsynaptic potential in gallbladder ganglia. The mast cell degranulator compound 48/80 caused a smooth muscle depolarization that was inhibited by the H(1) antagonist mepyramine, indicating that histamine released from mast cells can activate gallbladder smooth muscle. In conclusion, histamine released from mast cells can act on gallbladder smooth muscle, but not in ganglia. The depolarization and associated contraction of gallbladder smooth muscle represent the net effect of activation of both H(1) (excitatory) and H(2) (inhibitory) receptors, with the H(2) receptor-mediated response involving the activation of K(ATP) channels.  相似文献   

5.
The excitation and contraction features of innervated and sympathetically denervated smooth muscle strips from cat's nictitating membrane have been studied by single sucrose gap arrangement. Increasing of smooth muscle cells sensitivity to drugs were accompanied by elevation of membrane response and the ability to generation of action potentials. Action potentials have been induced by agonists or high potassium concentration in external solution and spontaneously. In innervated muscle action potentials have been evoked as a result of depolarization by high potassium concentration of TEA blockade of potassium conductance. Induced and spontaneously generated action potentials were blocked by organic and inorganic antagonists of potential dependent Ca++ channels. In Ca-free solution action potentials were absent but might be supported by Ba++. Decrease of Na+ had no effect on smooth muscle excitability. It is supposed that activation of potential depended Ca++ channels in smooth muscle cells with pharmaco-mechanical coupling are under influence of sympathetic nerves.  相似文献   

6.
Normal muscle has a resting potential of -85 mV, but in a number of situations there is depolarization of the resting potential that alters excitability. To better understand the effect of resting potential on muscle excitability we attempted to accurately simulate excitability at both normal and depolarized resting potentials. To accurately simulate excitability we found that it was necessary to include a resting potential-dependent shift in the voltage dependence of sodium channel activation and fast inactivation. We recorded sodium currents from muscle fibers in vivo and found that prolonged changes in holding potential cause shifts in the voltage dependence of both activation and fast inactivation of sodium currents. We also found that altering the amplitude of the prepulse or test pulse produced differences in the voltage dependence of activation and inactivation respectively. Since only the Nav1.4 sodium channel isoform is present in significant quantity in adult skeletal muscle, this suggests that either there are multiple states of Nav1.4 that differ in their voltage dependence of gating or there is a distribution in the voltage dependence of gating of Nav1.4. Taken together, our data suggest that changes in resting potential toward more positive potentials favor states of Nav1.4 with depolarized voltage dependence of gating and thus shift voltage dependence of the sodium current. We propose that resting potential-induced shifts in the voltage dependence of sodium channel gating are essential to properly regulate muscle excitability in vivo.  相似文献   

7.
Although noradrenaline (NA), a stress-associated neurotransmitter, seems to affect the immune system, the precise mechanisms underlying NA-mediated immunoregulation are not fully understood. We examined the effect of NA on Ag uptake (endocytosis) by dendritic cells (DCs) using murine bone marrow-derived DCs and fluorescence-labeled endocytic tracers (dextran and OVA). Ag uptake by DCs notably increased following a very brief treatment (3 min) with NA. NA-induced endocytosis was completely blocked by treatment with α(2)-adrenoceptor antagonist yohimbine. Neither α(1)-adrenoceptor antagonist prazosin nor β-adrenoceptor antagonist propranolol affected NA-induced endocytosis by DCs. A selective α(2)-adrenoceptor agonist, azepexole (B-HT 933), also significantly increased endocytosis by DCs. Thus, the α(2)-adrenoceptor seems to be responsible for NA-induced DC endocytosis. In parallel, NA markedly activated intracellular signaling pathways of PI3K and ERK1/2 in DCs. NA-mediated activation of these pathways was completely inhibited by yohimbine treatment. Blocking PI3K activation significantly reduced NA-induced endocytosis by DCs. Based on these results, NA rapidly enhances Ag capture by DCs via α(2) adrenoceptor-mediated PI3K activation, which may be associated with immune enhancement following acute stress.  相似文献   

8.
Vasoconstrictors activate phospholipase C (PLC), which hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP(2)), leading to calcium mobilization, protein kinase C activation, and contraction. Our aim was to investigate whether PLC-delta(1), a PLC isoform implicated in alpha(1)-adrenoreceptor signaling and the pathogenesis of hypertension, is involved in noradrenaline (NA) or endothelin (ET-1)-induced PIP(2) hydrolysis and contraction. Rat mesenteric small arteries were studied. Contractility was measured by pressure myography, phospholipids or inositol phosphates were measured by radiolabeling with (33)Pi or myo-[(3)H]inositol, and caveolae/rafts were prepared by discontinuous sucrose density centrifugation. PLC-delta(1) was localized by immunoblot analysis and neutralized by delivery of PLC-delta(1) antibody. The PLC inhibitor U73122, but not the negative control U-73342, markedly inhibited NA and ET-1 contraction but had no effect on potassium or phorbol ester contraction, implicating PLC activity in receptor-mediated smooth muscle contraction. PLC-delta(1) was present in caveolae/rafts, and NA, but not ET-1, stimulated a rapid twofold increase in PLC-delta(1) levels in these domains. PLC-delta(1) is calcium dependent, and removal of extracellular calcium prevented its association with caveolae/rafts in response to NA, concomitantly reducing NA-induced [(33)P]PIP(2) hydrolysis and [(3)H]inositol phosphate formation but with no effect on ET-1-induced [(33)P]PIP(2) hydrolysis. Neutralization of PLC-delta(1) by PLC-delta(1) antibody prevented its caveolae/raft association and attenuated the sustained contractile response to NA compared with control antibodies. In contrast, ET-1-induced contraction was not affected by PLC-delta(1) antibody. These results indicate the novel and selective role of caveolae/raft localized PLC-delta(1) in NA-induced PIP(2) hydrolysis and sustained contraction in intact vascular tissue.  相似文献   

9.
S Paradis  S T Sweeney  G W Davis 《Neuron》2001,30(3):737-749
Homeostatic mechanisms regulate synaptic function to maintain nerve and muscle excitation within reasonable physiological limits. The mechanisms that initiate homeostasic changes to synaptic function are not known. We specifically impaired cellular depolarization by expressing the Kir2.1 potassium channel in Drosophila muscle. In Kir2.1-expressing muscle there is a persistent outward potassium current ( approximately 10 nA), decreased muscle input resistance (50-fold), and a hyperpolarized resting potential. Despite impaired muscle excitability, synaptic depolarization of muscle achieves wild-type levels. A quantal analysis demonstrates that increased presynaptic release (quantal content), without a change in quantal size (mEPSC amplitude), compensates for altered muscle excitation. Because morphological synaptic growth is normal, we conclude that a homeostatic increase in presynaptic release compensates for impaired muscle excitability. These data demonstrate that a monitor of muscle membrane depolarization is sufficient to initiate synaptic homeostatic compensation.  相似文献   

10.
The sarcoplasmic reticulum is a unique organelle found in muscle cells that is dedicated to the regulation of Ca(2+) homeostasis and activation of myofilament contraction. The functional requirement for an efficient and synchronous activation of Ca(2+) release from the SR, following the depolarization of the plasma membrane, accounts for the complex three-dimensional organization of internal membranes observed in muscle cells and for the localization of proteins at specific sites of the SR. Recent advancements in understanding the molecular basis of SR structure and function have greatly increased our understanding of muscle cellular physiology and biology. Parallel work has revealed that several human diseases affecting skeletal and cardiac tissues are linked to either mutations or altered post-translational modifications of SR proteins.  相似文献   

11.
Experiments were performed on the smooth muscle cells of rabbit a. pulmonalis using the microelectrode technique. No spontaneous electrical or mechanical activity was recorded in normal Krebs solution. The current-voltage relation in these smooth muscle cells showed marked rectification. No changes in the isometric tension were observed due to the anodal or cathodal stimulating currents. Strong depolarization of the muscle cells produced only local potentials on the cathelectrotone which never developed into a spike. Noradrenaline (10(-8) g/ml) caused depolarization of the 5-7 mV in the muscle cell membrane and a considerable contraction of the muscle strip as well. Under such conditions the contractile apparatus of the muscle cells became sensible to the resting potential level. Anodal stimulation was accompanied by relaxation of the muscle strip, whereas cathodal stimulation--by its contraction. The alpha-adrenoblocking agent (phentolamine) blocked the effect of noradrenaline evidencing the fact that noradrenaline exerted its excitatory action on the smooth muscle cells of the a. pulmonalis through the alpha-adrenoreceptors.  相似文献   

12.
The effects of changes in membrane potential level on the electrical and contractile responses induced by serotonin (10(-6) mol/l) were investigated in muscle strips from rabbit main pulmonary artery using sucrose-gap technique. In spite of the fact that serotonin-induced depolarization did not exceed the threshold level for development of contraction, it was followed by a strong tonic contraction. Nearly a half of this contraction could be relaxed by an electrotonic hyperpolarization of the membrane. A week preliminary depolarization of the muscle cells resulted in an increase while a strong depolarization--in dramatic decrease of serotonin-induced contraction. Nifedipine effectively blocked potassium-induced, but not serotonin induced contraction. We suggest that in addition to voltage-operated and receptor operated Ca channels in vascular smooth muscle cell membrane there is a separate class of nifedipine-insensitive Ca channels operated by both serotonin receptor and membrane potential.  相似文献   

13.
Single crab (Callinectes danae) fibers were equilibrated with isotonic, high KCl solutions and were subsequently returned to the control saline. This caused marked swelling of the T tubules. Fibers treated with 100 mM KCl had a 2.5-mV residual depolarization, a 50% decrease in effective membrane resistance (Reff) and a 75% reduction in membrane time constant (tau m). These fibers exhibited large increases in membrane conductance upon depolarization and were inexcitable; membrane depolarization with current pulses elicited no contraction. The effects of the KCl treatment on membrane properties were not reproduced by treatment with high potassium gluconate solutions, which did not cause tubular swelling. Tetrabutylammonium (10 mM) or Ba ions (10-20 mM), but not tetraethylammonium (40-100 mM), Sr ions (15-70 mM), or procaine (1-8 mM) reversed the effects of the KCl treatment on Reff, tau m, membrane excitability, and excitation-contraction coupling. The time course of the Ba effects was consistent with the suggestion that the KCl treatment increases the K conductance of the tubular membranes, which in turn prevents the activation of voltage-dependent Ca channels located in the membranes of the T system. This results in inhibition of the Ca-dependent electrogenesis and consequently, the absence of contraction upon depolarization of the plasma membrane.  相似文献   

14.
The purpose of this study was to assess the direct effect of progesterone on rabbit pulmonary arteries and to examine the mechanism of its action. Rings of pulmonary artery from male rabbits were suspended in organ baths containing Krebs solution, and isometric tension was measured. The response to progesterone was investigated in arterial rings contracted with noradrenaline (NA), KCl, and CaCl2. The effects of endothelium, nitric oxide (NO), prostaglandins, cyclic GMP (cGMP), and the adrenergic beta-receptor on progesterone-induced relaxation were also assessed. Progesterone inhibited the vasocontractivity to NA, KCl, and CaCl2, and relaxed rabbit pulmonary artery. The relaxing response of progesterone in pulmonary artery was significantly reduced by removal of endothelium, inhibitors of nitric oxide synthase and guanylate cyclase, but not by prostaglandin synthase inhibitor and blockage of the adrenergic beta-receptor. In Ca2+-free (0.1 mM EGTA) Krebs solution, progesterone inhibited NA-induced contraction that was intracellular Ca2+-dependent, but didn't affect the contraction of extracellular Ca2+-dependent component. Our results suggest that progesterone induces relaxation of isolated rabbit pulmonary arteries partially via NO and cGMP. Progesterone may also inhibit Ca2+ influx through potential-dependent calcium channels (PDCs) and Ca2+ release from intracellular stores.  相似文献   

15.
KATP channels play critical roles in many cellular functions by coupling cell metabolic status to electrical activity. First discovered in cardiomyocytes 1, KATP channels (comprised of Kir6.x and SUR subunits) have since been found in many other tissues, including pancreatic beta cells, skeletal muscle, smooth muscle, brain, pituitary, and kidney. By linking cellular metabolic state with membrane potential, KATP channels are able to regulate a number of cellular functions such as hormone secretion, vascular tone, and excitability. Specifically, a reduction in metabolism causes a decrease in the ATP:ADP ratio, opening of KATP channels and allowing K+ efflux, membrane hyperpolarization, and suppression of electrical activity. Conversely, increased cellular metabolism causes a decrease in the ATP:ADP ratio that leads to closure of the KATP channel, membrane depolarization, and stimulation of cell electrical activity.  相似文献   

16.
A method for measuring muscle fiber capacitance using small test pulses applied with the three-microelectrode voltage clamp is presented. Using this method, three membrane potential-dependent changes in capacitance were observed: (a) Capacitance of polarized fibers increased by 5--15% with depolarization from V less then -100 mV to voltages slightly below the contraction threshold. (b) Capacitance of fibers depolarized to -30 mV by 100 mM Rb solution decreased by roughly 8% with further depolarization to about +50 mV and increased with repolarization, exhibiting a maximum increase of about 10% at -80 to -90 mV. (c) Capacitance of fibers depolarized to -15 mV by 100 mM K solution increased by about 19% with further depolarization to +43 mV and decreased by about 23% with repolarization to -62 mV. Effects a and b are attributed to changes in specific membrane capacitance due to voltage-dependent redistribution of mobile charged groups within surface of T-tubule membranes. Effect c is caused by changes in the T-system space constant lambdaT due to the voltage dependence of K conductance (inward rectification). Analysis of c showed that in 100 mM K solution lambdaT congruent to 30 mum when inward rectification was fully activated by hyperpolarization and that the density of inward rectifier channels is about the same in surface and tubular membranes. Fiber internal resistance was found to be independent of voltage, a necessary condition for the interpretation of the capacitance measurements.  相似文献   

17.
Inactivation of excitation-contraction coupling was examined in extensor digitorum longus (EDL) and soleus muscle fibers from rats injected daily with tri-iodothyronine (T3, 150 micrograms/kg) for 10-14 d. Steady-state activation and inactivation curves for contraction were obtained from measurements of peak potassium contracture tension at different surface membrane potentials. The experiments tested the hypothesis that noninactivating tension is a "window" tension caused by the overlap of the activation and inactivation curves. Changes in the amplitude and voltage dependence of noninactivating tension should be predicted by the changes in the activation and inactivation curves, if noninactivating tension arises from their overlap. After T3 treatment, the area of overlap increased in EDL fibers and decreased in soleus fibers and the overlap region was shifted to more negative potentials in both muscles. Noninactivating tension also appeared at more negative membrane potentials after T3 treatment in both EDL and soleus fibers. The effects of T3 treatment were confirmed with a two microelectrode voltage-clamp technique: at the resting membrane potential (-80 mV) contraction in response to a brief test pulse required less than normal depolarization in EDL, but more than normal depolarization in soleus fibers. After T3 treatment, the increase in contraction threshold at depolarized holding potentials (attributed to inactivation) occurred at more depolarized holding potentials in EDL, or less depolarized holding potentials in soleus. The changes in contraction threshold could be accounted for by the effects of T3 on the activation and inactivation curves. In conclusion, (a) T3 appeared to affect the expression of both activation and inactivation characteristics, but the activation effects could not be cleanly distinguished from T3 effects on the sarcoplasmic reticulum and contractile proteins, and (b) the experiments provided evidence for the hypothesis that the noninactivating tension is a steady-state "window" tension.  相似文献   

18.
Experiments were designed to determine whether the airway epithelium affects the membrane potential of the underlying smooth muscle. The effect of epithelium removal (by gentle rubbing) on the responsiveness of isolated canine bronchi was studied. Simultaneous recordings of mechanical and electrical activity were made in paired circumferential strips (with and without epithelium) of third-order bronchi. Changes in tension were recorded with a force transducer, and changes in membrane potential were measured with a microelectrode. The cell membrane potential and resting tension of the bronchial smooth muscle were stable over a 150-min period and were not affected by removal of the epithelium. In the presence of antagonists at muscarinic and adrenergic receptors, the resting tension and membrane potential were comparable in preparations with and without epithelium. By contrast, the anticholinesterase, echothiophate, caused depolarization in bronchi without epithelium. Exposure to high potassium induced similar levels of depolarization and contraction in tissues with and without epithelium. No significant differences in threshold for depolarization or for mechanical activation in the membrane potential-tension relationship were noted in the presence or absence of epithelium. In the presence of echothiophate, removal of the epithelium augmented the contraction of the bronchi to acetylcholine; the depolarization of the cell membrane induced by the cholinergic transmitter was significantly larger than in control tissues, even when matched contractions were compared. These observations indicate that the respiratory epithelium generates an inhibitory substance that dampens depolarization and contraction of bronchial smooth muscle caused by acetylcholine.  相似文献   

19.
The flow of the blood past the vascular wall gives rise to an electrical potential. This field is calculated to have a periodic waveform with a transluminal peak-to-peak amplitude of approximately 1.35 V/m-1. Digital imaging fluorescent microscopy was used to measure changes in the membrane potentials of smooth muscle cells by following changes in the fluorescence of the potential sensitive dye, 3,3'-dipropyloxacarbocyanine iodide (di-O-C5[3]). The effect of the low level electrical field on the membrane potentials of cultured smooth muscle vascular cells was shown to cause a steady-state depolarization of approximately 10 mV. The degree of steady-state depolarization was shown to directly vary with the frequency of the applied field and the effect was not dependent on the presence of extracellular Ca+2 or Mg+2. These effects are though to be most consistent with an electroconformational coupling mechanism. The presence of this electrokinetic field was also shown to alter the electrophysiological response of smooth muscle cells treated with 5-hydroxytryptamine. Cells exposed concurrently to both 5-HT and the electrical field showed an increased membrane depolarization thus implying that the electrokinetic field may be important in both normal and pathologic cellular responses.  相似文献   

20.
The purpose of this study was to investigate the actions of estradiol on spontaneous and evoked action potentials in the isolated longitudinal smooth muscle cells of the pregnant rat. Single cells were obtained by enzymatic digestion from pregnant rat longitudinal myometrium. Action potentials and currents were recorded by whole-cell current-clamp and voltage-clamp methods, respectively. The acute effects of 17beta-estradiol on action potentials and inward and outward currents were investigated. The following results were obtained. The average resting membrane potential of single myometrial cells was -54 mV (n = 40). In many cells, an electrical stimulation evoked a membrane depolarization, and action potentials were superimposed on the depolarization. In some cells, spontaneous action potentials were observed. Estradiol (30 microM) slightly depolarized the membrane (ca. 5 mV) and attenuated the generation of action potentials by reducing the frequency and amplitude of the spikes. Afterhyperpolarization was also attenuated by estradiol (30 microM). On the other hand, in 5 of 35 cells, estradiol increased the first spike amplitude and action potential duration, while frequency of the spike generation and afterhyperpolarization were inhibited. In voltage-clamped muscle cells, estradiol inhibited both inward and outward currents. Acute inhibition or augmentation of spike generation by estradiol is due to the balance of inhibition of inward and outward currents. Inhibition of both currents also prevented afterhyperpolarization, causing potential-dependent block of Ca spikes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号