首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
从传统藏药五脉绿绒蒿(Meconopsis quintuplinervia Regel.)全草乙醇提取物中分离得到6个化合物,利用波谱方法鉴定为8,9-dihydroxy-1,5,6,10b-tetrahydro-2H-pyrrolo[2,1-a]isoquinolin-3-one(1)、甲氧基淡黄巴豆亭碱(o-methylflavi nantine,2)、黑水罂粟碱(amurine,3)、tricin(4)、木犀草素(luteolin,5)以及β-谷甾醇(β-sitosterol,6)。其中化合物1,4为首次从该植物中分得。  相似文献   

2.
藏药全缘叶绿绒蒿的化学成分研究   总被引:5,自引:0,他引:5  
从藏药全缘叶绿绒蒿(Meconopsis integrifolia(Maxim.)Franch)全草乙醇提取物中分离得到六个化合物,分别鉴定为:普托品碱(protopine,1)、马齿苋酰胺E(Oleracin E,2)、木犀草素(luteolin,3)、二氢槲皮素(dihydro quercetin,4)、洋芹素(apigenin,5)和小麦黄素(tricin,6),其中,化合物2~6为首次从该植物中分离得到.  相似文献   

3.
藏药绿绒蒿的品种研究   总被引:6,自引:0,他引:6  
本文对藏医应用的绿绒蒿属植物进行调查,确认一些习用品和代用品原植物基源。为进一步合理开发和保护藏药资源提供科学依据。  相似文献   

4.
藏药红花绿绒蒿的化学成分   总被引:3,自引:0,他引:3  
从红花绿绒蒿(Meconopsis punicea)植物地上部分中分离得到17个化合物,通过MS和NMR等方法将它们的结构分别鉴定为karachine(1)、valachine(2)、二氢血根碱(dihydrosanguinarine,3)、威尔士绿绒蒿定碱((?)-mecambridine,4)、原鸦片碱(protopine,5)、马齿苋酰胺E(oleracein E,6)、anhydroberberillic acid(7)、小糪碱(berberine,8)、阿苞碱(alborine,9)、木犀草素(luteolin,10)、小麦黄素(tricin,11)、二氢槲皮素(dihydroquerce-tin,12)、洋芹素(apigenin,13)、大风子素(hydnocarpin,14)、小麦黄素7-O-β-D-葡萄糖苷(tricin 7-O-β-D-glucopyr-anoside,15)、对羟基桂皮酸(p-coumaric acid,16)和尿嘧啶(uracil,17)。其中,化合物1~3、7、15和17为首次从该属植物中分离得到;6、8、11和14为首次从该种植物中分离得到,采用二维NMR技术首次归属了化合物1和2的1H和13C NMR信号。  相似文献   

5.
对自然杂交种Meconopsis×cookei及其亲本红花绿绒蒿M.punicea和五脉绿绒蒿M.quintuplinervia的叶绿体DNAtrnL-trnF区进行了序列测定,所得序列的长度为957~961bp,其中M.×cookei的序列长度为960bp,红花绿绒蒿为961bp,五脉绿绒蒿为957bp。利用软件Clustal X对所得序列进行排序和碱基比较,排序后的序列长度为964bp,其中trnLintron为512bp,trnL3′exon为50bp,trnL-trn Fintergenic spacer(IGS)为361bp,还包括41bp的trnF5′端片段。整个trnL-trnF区序列共有25个变异位点,其中杂交种M.×cookei与红花绿绒蒿具有相同碱基的位点有21个(占84%),M.×cookei与五脉绿绒蒿具有相同碱基的位点仅有1个(占4%),余下3个位点(占12%)中,M.×cookei的碱基与两个亲本均不相同。分析结果表明,杂交种M.×cookei的叶绿体基因trnL-trnF来自红花绿绒蒿,根据质体细胞质遗传的规律,从而推测红花绿绒蒿为该杂交种的母本,五脉绿绒蒿为其父本。  相似文献   

6.
对自然杂交种Meconopsis× cookei 及其亲本红花绿绒蒿M. punicea 和五脉绿绒蒿M. quintuplinervia 的叶绿体DNA trnL- trnF 区进行了序列测定, 所得序列的长度为957~961 bp , 其中M. × cookei 的序列长度为960bp , 红花绿绒蒿为961 bp , 五脉绿绒蒿为957 bp。利用软件Clustal X 对所得序列进行排序和碱基比较, 排序后的序列长度为964 bp , 其中trnL intron 为512 bp , trnL 3′exon 为50 bp , trnL- trnF intergenic spacer ( IGS) 为361 bp , 还包括41 bp 的trnF 5′端片段。整个trnL- trnF 区序列共有25 个变异位点, 其中杂交种M. × cookei与红花绿绒蒿具有相同碱基的位点有21 个( 占84% ) , M. × cookei 与五脉绿绒蒿具有相同碱基的位点仅有1 个(占4% ) , 余下3 个位点( 占12%) 中, M. × cookei 的碱基与两个亲本均不相同。分析结果表明, 杂交种M. × cookei 的叶绿体基因trnL- trnF 来自红花绿绒蒿, 根据质体细胞质遗传的规律, 从而推测红花绿绒蒿为该杂交种的母本, 五脉绿绒蒿为其父本。  相似文献   

7.
红花绿绒蒿的非生物碱成分   总被引:6,自引:0,他引:6  
本文对红花绿绒蒿的非生物碱成分进行了研究。分离并用波谱法鉴定了的其中6个成分为:21α-羟基熊果酸(1),肉豆蔻酸2,3-二羟基丙酯(2),豆甾醇(3),β-香树精(4),熊果酸(5)及胡萝卜甙(6)。  相似文献   

8.
目的:调查藏药红花绿绒蒿的资源现状,促进红花绿绒蒿的资源保护及可持续开发利用.方法:通过文献整理及野外资源调查相结合的方法对红花绿绒蒿野生资源进行调查.结果:红花绿绒蒿生长环境特殊,分布范围狭窄,集中分布于海拔3500~4000 m的山坡草地及高山灌丛,种群规模较小,多呈点状分布.利用3S技术估算野生资源蕴藏量仅有10...  相似文献   

9.
赤霉素对总状绿绒蒿三个居群种子萌发特性的影响   总被引:1,自引:0,他引:1  
采集生长于滇西北不同海拔梯度的3个总状绿绒蒿居群种子,分别采用不同浓度的赤霉素(GA3)处理后,进行种子萌发实验。结果表明:(1)种子的长宽比和千粒重随海拔升高而增加,差异显著(P<0.05);种子含水量随海拔升高而降低,且差异显著(P<0.05)。(2)不同居群的对照种子发芽率随海拔升高而增加,平均发芽时间随海拔升高而缩短。(3)100~250 mg·L-1的GA3处理可提高种子的发芽率和发芽势,且差异极显著(P<0.001),但GA3处理对平均发芽时间无显著影响(P>0.05)。同时,各居群萌发指标的最适GA3处理浓度不一致。(4)居群对总状绿绒蒿种子的发芽率和发芽势无显著影响(P>0.05),而对种子平均发芽时间影响显著(P<0.05)。说明海拔是造成不同居群种子外部形态和种子萌发特性差异的原因之一,而不同浓度的GA3对各居群种子的萌发有不同程度的影响。  相似文献   

10.
丁亚丽 《生物资源》2022,(5):476-483
为了进一步探究传统藏药植物多刺绿绒蒿(Meconopsis horridula)中代谢物成分以及不同器官差异情况,采用UPLC-MS技术对多刺绿绒蒿的叶、根和花三个不同器官代谢物进行分析与鉴定。并利用主成分分析(PCA)、聚类热图分析、正交偏最小二乘-判别分析(OPLS-DA)和KEGG通路富集分析等方法进行不同器官差异代谢产物筛选与通路分析。结果显示,在ESI+和ESI-模式下,共检测注释到947种代谢物,不同器官间差异代谢物进行分析,叶和根差异代谢物有301个,叶和花中差异代谢物有170个,根和花中差异代谢物有244个。通过聚类热图可以看出,大多数代谢物在根中含量较低;KEGG通路富集分析显示,差异代谢物大多富集在氨基酸代谢、花青素生物合成、黄酮类生物合成和生物碱合成等代谢途径。各器官优势黄酮类、萜类和生物碱类代谢物的分析为进一步探究多刺绿绒蒿的不同器官药用特征成分和开发利用提供一定的帮助。  相似文献   

11.
钟涛  段旭宇  姜银银  刘光立 《广西植物》2020,40(9):1315-1324
为探究全缘叶绿绒蒿( Meconopsis integrifolia )的花内热量来源和温度调节功能,该研究选择在全缘叶绿绒蒿的巴朗山居群,对其进行遮阴及去瓣处理,并采用红外热像仪监测全缘叶绿绒蒿的花内微环境温度日变化及花器官温度,用环境温度计监测环境温度。结果表明:(1)太阳照射显著提高全缘叶绿绒蒿花内微环境温度和花器官温度,全缘叶绿绒蒿的热量主要来源于太阳辐射。花内微环境昼夜温差显著低于环境昼夜温差,全缘叶绿绒蒿的花具有温度调节功能。(2)白天环境温度较高时,太阳照射显著提高全缘叶绿绒蒿花内微环境温度,花瓣会降低花内微环境温度; 夜间环境温度较低时,花瓣闭合会提高花内微环境温度; 花瓣闭合运动降低了花内微环境昼夜温差,产生了保温效果。(3)在太阳照射下,花器官温度差异显著,雌雄蕊温度显著高于花瓣温度,且花器官温度由雌蕊柱头中心点向外递减,全缘叶绿绒蒿能有效调控花器官各部位的温度。综上认为,全缘叶绿绒蒿的花内热量来源于太阳辐射,主要通过花瓣闭合运动降低花内微环境昼夜温差并能在太阳照射下调节各花器官的温度实现温度调节功能。  相似文献   

12.
为了探明高山植物全缘叶绿绒蒿(Meconopsis integrifolia)的繁育系统特点和其对高山气候环境的繁殖适应特征,我们沿海拔梯度选择了5个样地(样地1(4 452 m)、样地2(4 215 m)、样地3(4 081 m)、样地4(3 841 m)、样地5(3 681 m))对其传粉生态学进行了连续2年的观察试验。结果发现,样地1、2的全缘叶绿绒蒿的单花寿命显著长于样地3、4和5。花开放早期柱头高于花药,之后花药不断伸长,并在开放中后期与柱头接触,说明全缘叶绿绒蒿具有不完全雌雄异位的花部特征。自然状态下,柱头可授能力持续期约8天(雌蕊先熟),但花药于开花第5天才散粉,花粉寿命约2天,说明全缘叶绿绒蒿为雌雄异熟,但存在一定的重叠期。人工授粉试验表明,全缘叶绿绒蒿自交部分亲和,且不存在无融合生殖现象。各样地中自然对照的结实率显著低于人工异交处理的结实率,说明自然状态下全缘叶绿绒蒿存在一定程度的传粉限制。传粉昆虫观察发现,样地1和2的传粉昆虫主要是蝇类,样地3、4和5的传粉昆虫主要是蝇类和蓟马(Thripidae spp.),蝇类在不同植株间的活动能够保证异花传粉结实,同时,蝇类和蓟马在花内的活动会引起"协助自交"。全缘叶绿绒蒿约65%的观察个体存在"自动自交"。蝇类在各样地的访花频率存在显著差异,样地1访花频率最低,样地2访花频率最高。各样地的结实由于异花传粉者的不足而受到传粉限制。两种不同类型的自交机制恰恰为该植物异花传粉者不足提供了一定程度的繁殖补偿。全缘叶绿绒蒿不分泌花蜜,当环境温度降低时,采取为昆虫提供保温庇护场所的方式来吸引传粉者。  相似文献   

13.
绿绒篙属(Meconopsis Vig.)是罂粟科中较大的一属,全属共有49种,除1种产西欧外,其余均分布于东亚的中国喜马拉雅地区。我国产38种。绿绒蒿是著名的观赏植物,以其花大、色泽艳丽、姿态优美而著称,是高山植物中最引人注目的花卉之一,常与另一些高山植物共同组成绚丽多彩的高山植被,早为国内外学者所引种栽培。有些种类入药。  相似文献   

14.
青藏高原物种丰富且属于气候变化敏感区,研究气候变化对青藏高原物种的潜在分布影响,对于该区域物种多样性保护具有重要意义。该研究以一级濒危藏药植物全缘叶绿绒蒿为研究对象,利用加权平均算法(weighted average algorithm, WAA)构建随机森林(RF)、灵活判别分析(FDA)及人工神经网络(ANN)的集成模型,同时对比分析了WAA模型和不同生态位模型的预测精度。最后利用WAA模型预测了全缘叶绿绒蒿在当前(1970~2000年平均)和未来(2041~2060年平均)气候情景下的潜在分布,其中未来气候考虑了2种“共享社会经济路径”(SSP2-45和SSP5-85)。结果显示:(1) WAA模型的预测表明,基于RF、FDA和ANN的集成模型的AUC值为0.926,在AUC值最高RF模型的基础上提高了3%,在FDA和ANN模型的AUC值的基础上均提高了5%。(2) WAA模型确定,全缘叶绿绒蒿的潜在分布对年降水量和最暖季降水量最为敏感,其次是最热月份最高气温,同时对最湿月份降水量以及等温性表现出较低的敏感性。(3)当前全缘叶绿绒蒿潜在分布区主要分布在甘肃西南部、青海东部至南部、四川西部和西北部、云南西北部和东北部、西藏东部。(4)未来气候变化下青藏高原全缘叶绿绒蒿潜在分布预测表明,在2050年SSP2-45情景下,全缘叶绿绒蒿的潜在分布区大小与当前潜在分布区大小基本相同,但整体向西北方向高海拔高纬度地区迁移;在SSP5-85情景下,全缘叶绿绒蒿的潜在分布区明显收缩,且向西北高纬度高海拔地区延伸的趋势更加明显。  相似文献   

15.
提出顶点及顶点相互作用矢量的概念,并将该矢量用于复杂样本的分子结构表征。采用逐步回归结合统计检测对变量进行筛选后,再用多元线性回归建立了定量结构-色谱保留(QSRR)关系的7变量模型,模型的建模计算值复相关系数(R)为0.990,标准偏差(SD)为1.325;留一法(LOO)交互检验复相关系数(RCV)为0.983,标准偏差(SDCV)为1.696。结果表明该矢量具有较强的分子结构表达能力,模型具有良好的估计能力与稳定性。  相似文献   

16.
不同海拔高度五脉绿绒蒿中槲皮素和木犀草素含量变化   总被引:1,自引:0,他引:1  
采用HPLC法测定了青海达里加山和拉鸡山地区不同海拔五脉绿绒蒿的槲皮素和木犀草素含量.达里加山样品中槲皮素和木犀草素平均含量分别为0.1040和0.1299 mg/g,拉鸡山样品中分别为0.0719和0.2018 mg/g.结果表明,五脉绿绒蒿中槲皮素和木犀草素含量在青海达里加山地区呈现出随海拔升高而趋于增高的明显变化趋势,但在拉鸡山地区则呈现出先降后升的变化趋势,其内在变化规律尚待深入探究.  相似文献   

17.
任玉玲  赵艳  赵成周  李萍 《广西植物》2022,42(9):1561-1571
WD40转录因子家族广泛参与调节植物生长、发育、次生代谢物积累和环境适应等过程。为了探究WD40家族在多刺绿绒蒿生长、发育和次生代谢物积累以及抗逆方面的作用,该研究基于全长转录组测序数据,鉴定了多刺绿绒蒿WD40基因家族成员,并对这些基因及其编码的蛋白进行了生物信息学分析。结果表明:(1)共鉴定到19个WD40基因,编码的蛋白均具有WD40结构域,氨基酸数目为109~758 aa,分子量介于11 830~84 130 Da之间,预测大多数蛋白定位在细胞核中且都为亲水性蛋白;(2)系统进化树分析表明多刺绿绒蒿与罂粟、博落回亲缘关系较近;(3)WD40基因启动子区域均存在数量不等的激素或逆境响应元件,表明该家族基因可能参与植物生长、发育和次生代谢物积累等多种生物学进程的调节;(4)蛋白三级结构显示这些蛋白在进化过程中发生了不同程度的进化。这些结果可为深入研究多刺绿绒蒿WD40基因家族在其响应逆境胁迫和次生代谢物积累等方面的具体机制提供前期基础。  相似文献   

18.
通过cDNA末端快速扩增技术(rapid amplification of cDNA ends, RACE),从威氏绿绒蒿(Meconopsis wilsonii)花中克隆得到黄烷酮-3-羟化酶(flavanone-3-hydroxylase, F3H)基因,将其命名为MwF3H,对其理化性质、蛋白结构域、进化关系、基因表达水平进行分析,并探讨MwF3H基因在威氏绿绒蒿花发育不同时期的表达模式。结果表明,该基因编码区长度为1 104 bp,其编码蛋白的分子量为41.444 kDa, 367个氨基酸,理论等电点(pI)4.98,属于PLNO2515超基因家族,构建系统发育树发现威氏绿绒蒿与藏南绿绒蒿(M.zangnanensis)亲缘关系较近,同一物种不同地理区域存在差异。qPCR结果显示MwF3H基因在威氏绿绒蒿花发育不同阶段均有不同程度的表达,除花蕾着色期外,盛花期表达量最高。研究表明MwF3H基因可能参与威氏绿绒蒿花相关色素的生物合成,在威氏绿绒蒿花色形成过程中具有关键作用。  相似文献   

19.
为了对芒果核中的化学成分进行系统全面地分析,本研究采用超高效液相色谱-四级杆-飞行时间质谱(UPLC-Q-TOF-MS/MS)对芒果核中的化学成分进行了分析和鉴定。采用电喷雾离子源(ESI),于负离子模式下采集数据;结合对照品质谱数据及相关文献,对样品中成分的二级质谱数据进行分析,共鉴定出135个化合物,主要包括没食子酸鞣质类47个、黄酮类47个、有机酸类30个、香豆素类3个、环烯醚萜苷类8个,其中17个化合物首次在芒果核中鉴定得出。本实验运用UPLC-Q-TOF-MS/MS技术对芒果核的化学成分进行了较为全面系统地解析,可为其后续的药效物质基础研究及临床应用奠定基础。  相似文献   

20.
为了探明高山植物全缘叶绿绒蒿(Meconopsis integrifolia)的繁育系统特点和其对高山气候环境的繁殖适应特征, 我们沿海拔梯度选择了5个样地(样地1 (4452 m)、样地2 (4215 m)、样地3 (4081 m)、样地4 (3841 m)、样地5 (3681 m))对其传粉生态学进行了连续2年的观察试验。结果发现, 样地1、2的全缘叶绿绒蒿的单花寿命显著长于样地3、4和5。花开放早期柱头高于花药, 之后花药不断伸长, 并在开放中后期与柱头接触, 说明全缘叶绿绒蒿具有不完全雌雄异位的花部特征。自然状态下, 柱头可授能力持续期约8天(雌蕊先熟), 但花药于开花第5天才散粉, 花粉寿命约2天, 说明全缘叶绿绒蒿为雌雄异熟, 但存在一定的重叠期。人工授粉试验表明, 全缘叶绿绒蒿自交部分亲和, 且不存在无融合生殖现象。各样地中自然对照的结实率显著低于人工异交处理的结实率, 说明自然状态下全缘叶绿绒蒿存在一定程度的传粉限制。传粉昆虫观察发现, 样地1和2的传粉昆虫主要是蝇类, 样地3、4和5的传粉昆虫主要是蝇类和蓟马(Thripidae spp.), 蝇类在不同植株间的活动能够保证异花传粉结实, 同时, 蝇类和蓟马在花内的活动会引起“协助自交”。全缘叶绿绒蒿约65%的观察个体存在“自动自交”。蝇类在各样地的访花频率存在显著差异, 样地1访花频率最低, 样地2访花频率最高。各样地的结实由于异花传粉者的不足而受到传粉限制。两种不同类型的自交机制恰恰为该植物异花传粉者不足提供了一定程度的繁殖补偿。全缘叶绿绒蒿不分泌花蜜, 当环境温度降低时, 采取为昆虫提供保温庇护场所的方式来吸引传粉者。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号