首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
2.
3.
Chromatin is broadly compartmentalized in two defined states: euchromatin and heterochromatin. Generally, euchromatin is trimethylated on histone H3 lysine 4 (H3K4me3) while heterochromatin contains the H3K9me3 mark. The H3K9me3 modification is added by lysine methyltransferases (KMTs) such as SETDB1. Herein, we show that SETDB1 interacts with its substrate H3, but only in the absence of the euchromatic mark H3K4me3. In addition, we show that SETDB1 fails to methylate substrates containing the H3K4me3 mark. Likewise, the functionally related H3K9 KMTs G9A, GLP and SUV39H1 also fail to bind and to methylate H3K4me3 substrates. Accordingly, we provide in vivo evidence that H3K9me2-enriched histones are devoid of H3K4me2/3 and that histones depleted of H3K4me2/3 have elevated H3K9me2/3. The correlation between the loss of interaction of these KMTs with H3K4me3 and concomitant methylation impairment leads to the postulate that at least these four KMTs require stable interaction with their respective substrates for optimal activity. Thus, novel substrates could be discovered via the identification of KMT interacting proteins. Indeed, we find that SETDB1 binds to and methylates a novel substrate, the inhibitor of growth protein ING2, while SUV39H1 binds to and methylates the heterochromatin protein HP1α. Thus, our observations suggest a mechanism of post-translational regulation of lysine methylation and propose a potential mechanism for the segregation of the biologically opposing marks, H3K4me3 and H3K9me3. Furthermore, the correlation between H3-KMTs interaction and substrate methylation highlights that the identification of novel KMT substrates may be facilitated by the identification of interaction partners.Key words: histone methylation, lysine methyltransferase, H3K4me3, H3K9me3, SETDB1, G9A, ING2  相似文献   

4.
This study was to investigate the biological function and underlying mechanisms of FENDRR in cholangiocarcinoma (CCA) cell proliferation, migration and invasion. FENDRR and survivin expression in CCA tissues or cell lines were measured by qRT-PCR. In QBC939 and HuCCTl cells, cell proliferation was detected by CCK-8, cell migration and invasion were using transwell assay. RNA pull-down and RIP assay were performed to determine whether FENDRR can combine with SETDB1 in CCA cell. The effect of SETDB1 on survivin and H3K9me1 expression in CCA cells were determined by western blotting. ChIP analysis was performed to analyze the combination of SETDB1 with survivin promoter in CCA cell. The effect of SETDB1 knockdown on survivin and H3K9me1 expression in CCA cells after transfection with FENDRR were determined by western blotting. The results showed that lncRNA FENDRR was downregulated in CCA tissues and cells, and was negatively correlated with survivin expression. Further investigation demonstrated that FENDRR represses CCA cell proliferation, migration and invasion through regulating survivin expression. FENDRR associated with SETDB1 and H3K9 to epigenetically silence survivin and then regulated cell proliferation, migration and invasion. These findings indicate an important role for FENDRR–survivin axis in CCA cell proliferation, migration and invasion, and reveal a novel epigenetic mechanism for survivin silencing. Our data indicated that FENDRR silences survivin via SETDB1-mediated H3K9 methylation, thereby represses CCA cell proliferation, migration and invasion.  相似文献   

5.
6.
Histone lysine methylation (HKM) is an epigenetic change that establishes cell-specific gene expression and determines cell fates. In this study, we investigated the expression patterns of histone H3 lysine 9 methyltransferases (H3K9MTases) G9a (euchromatic histone lysine N-methyltransferase 2, Ehmt2), GLP (euchromatic histone lysine N-methyltransferase 1, Ehmt1), SETDB1 (SET domain, bifurcated 1), PRDM2 (PR domain containing 2), SUV39H1 (suppressor of variegation 3–9 homolog 1), and SUV39H2, as well as the distribution of 3 types of HKM at histone H3 lysine 9: mono- (H3K9me1), di- (H3K9me2), or tri-methylation (H3K9me3), during mouse growth plate development. In the forelimb cartilage primordial at embryonic day 12.5 (E12.5), none of the H3K9MTases were detected and H3K9me1, H3K9me2, and H3K9me3 were scarcely detected. At E14.5, the H3K9MTases were expressed at low levels in proliferating chondrocytes and at high levels in prehypertrophic and hypertrophic chondrocytes. Among the H3K9 methylations, H3K9me1 and H3K9me3 were markedly noted in these chondrocytes. At E16.5, G9, GLP, SETDB1, PRDM2, SUV39H1, and SUV39H2, as well as H3K9me1, H3K9me2, and H3K9me3, were detected in prehypertrophic and hypertrophic chondrocytes in the growth plate. Western blotting and real-time quantitative polymerase chain reaction analysis revealed the distributions of G9 and GLP proteins and the expression of all the H3K9MTase mRNAs in prehypertrophic and hypertrophic chondrocytes. These data suggest that H3K9 methyltransferases are predominantly expressed in prehypertrophic and hypertrophic chondrocytes, and that they could be involved in the regulation of gene expression and progression of chondrocyte differentiation by affecting the methylation state of histone H3 lysine 9 in the mouse growth plate.  相似文献   

7.
Olivier Binda 《Epigenetics》2013,8(5):457-463
Lysine methylation of histones and non-histone proteins has emerged in recent years as a posttranslational modification with wide-ranging cellular implications beyond epigenetic regulation. The molecular interactions between lysine methyltransferases and their substrates appear to be regulated by posttranslational modifications surrounding the lysine methyl acceptor. Two very interesting examples of this cross-talk between methyl-lysine sites are found in the SET (Su(var)3–9, Enhancer-of-zeste, Trithorax) domain-containing lysine methyltransferases SET7 and SETDB1, whereby the histone H3 trimethylated on lysine 4 (H3K4me3) modification prevents methylation by SETDB1 on H3 lysine 9 (H3K9) and the histone H3 trimethylated on lysine 9 (H3K9me3) modification prevents methylation by SET7 on H3K4. A similar cross-talk between posttranslational modifications regulates the functions of non-histone proteins such as the tumor suppressor p53 and the DNA methyltransferase DNMT1. Herein, in cis effects of acetylation, phosphorylation, as well as arginine and lysine methylation on lysine methylation events will be discussed.  相似文献   

8.
《Epigenetics》2013,8(8):767-775
Chromatin is broadly compartmentalized in two defined states: euchromatin and heterochromatin. Generally, euchromatin is trimethylated on histone H3 lysine 4 (H3K4me3) while heterochromatin contains the H3K9me3 marks. The H3K9me3 modification is added by lysine methyltransferases (KMTs) such as SETDB1. Herein, we show that SETDB1 interacts with its substrate H3, but only in the absence of the euchromatic mark H3K4me3. In addition, we show that SETDB1 fails to methylate substrates containing the H3K4me3 mark. Likewise, the functionally related H3K9 KMTs G9A, GLP, and SUV39H1 also fail to bind and to methylate H3K4me3 substrates. Accordingly, we provide in vivo evidence that H3K9me2-enriched histones are devoid of H3K4me2/3 and that histones depleted of H3K4me2/3 have elevated H3K9me2/3. The correlation between the loss of interaction of these KMTs with H3K4me3 and concomitant methylation impairment leads to the postulate that, at least these four KMTs, require stable interaction with their respective substrates for optimal activity. Thus, novel substrates could be discovered via the identification of KMT interacting proteins. Indeed, we find that SETDB1 binds to and methylates a novel substrate, the inhibitor of growth protein ING2, while SUV39H1 binds to and methylates the heterochromatin protein HP1α. Thus, our observations suggest a mechanism of post-translational regulation of lysine methylation and propose a potential mechanism for the segregation of the biologically opposing marks, H3K4me3 and H3K9me3. Furthermore, the correlation between H3-KMTs interaction and substrate methylation highlights that the identification of novel KMT substrates may be facilitated by the identification of interaction partners.  相似文献   

9.
10.
11.
12.
13.
Recent studies have boosted our understanding of long noncoding RNAs (lncRNAs) in numerous biological processes, but few have examined their roles in somatic cell reprogramming. Through expression profiling and functional screening, we have identified that the large intergenic noncoding RNA p21 (lincRNA-p21) impairs reprogramming. Notably, lincRNA-p21 is induced by p53 but does not promote apoptosis or cell senescence in reprogramming. Instead, lincRNA-p21 associates with the H3K9 methyltransferase SETDB1 and the maintenance DNA methyltransferase DNMT1, which is facilitated by the RNA-binding protein HNRNPK. Consequently, lincRNA-p21 prevents reprogramming by sustaining H3K9me3 and/or CpG methylation at pluripotency gene promoters. Our results provide insight into the role of lncRNAs in reprogramming and establish a novel link between p53 and heterochromatin regulation.  相似文献   

14.
15.
16.
17.
The molecular mechanisms of reduced frataxin (FXN) expression in Friedreich''s ataxia (FRDA) are linked to epigenetic modification of the FXN locus caused by the disease-associated GAA expansion. Here, we identify that SUV4-20 histone methyltransferases, specifically SUV4-20 H1, play an important role in the regulation of FXN expression and represent a novel therapeutic target. Using a human FXN–GAA–Luciferase repeat expansion genomic DNA reporter model of FRDA, we screened the Structural Genomics Consortium epigenetic probe collection. We found that pharmacological inhibition of the SUV4-20 methyltransferases by the tool compound A-196 increased the expression of FXN by ∼1.5-fold in the reporter cell line. In several FRDA cell lines and patient-derived primary peripheral blood mononuclear cells, A-196 increased FXN expression by up to 2-fold, an effect not seen in WT cells. SUV4-20 inhibition was accompanied by a reduction in H4K20me2 and H4K20me3 and an increase in H4K20me1, but only modest (1.4–7.8%) perturbation in genome-wide expression was observed. Finally, based on the structural activity relationship and crystal structure of A-196, novel small molecule A-196 analogs were synthesized and shown to give a 20-fold increase in potency for increasing FXN expression. Overall, our results suggest that histone methylation is important in the regulation of FXN expression and highlight SUV4-20 H1 as a potential novel therapeutic target for FRDA.  相似文献   

18.
Although epigenetic alterations play an essential role in gliomagenesis, the relevance of aberrant histone modifications and the respective enzymes has not been clarified. Experimental data implicates histone H3 lysine (K) methyltransferases SETDB1 and SUV39H1 into glioma pathobiology, whereas linker histone variant H1.0 and H4K20me3 reportedly affect prognosis. We investigated the expression of H3K9me3 and its methyltransferases along with H4K20me3 and H1x in 101 astrocytic tumors with regard to clinicopathological characteristics and survival. The effect of SUV39H1 inhibition by chaetocin on the proliferation, colony formation and migration of T98G cells was also examined. SETDB1 and cytoplasmic SUV39H1 levels increased from normal brain through low-grade to high-grade tumors, nuclear SUV39H1 correlating inversely with grade. H3K9me3 immunoreactivity was higher in normal brain showing no association with grade, whereas H1x and H4K20me3 expression was higher in grade 2 than in normal brain or high grades. These expression patterns of H1x, H4K20me3 and H3K9me3 were verified by Western immunoblotting. Chaetocin treatment significantly reduced proliferation, clonogenic potential and migratory ability of T98G cells. H1x was an independent favorable prognosticator in glioblastomas, this effect being validated in an independent set of 66 patients. Diminished nuclear SUV39H1 expression adversely affected survival in univariate analysis. In conclusion, H4K20me3 and H3K9 methyltransferases are differentially implicated in astroglial tumor progression. Deregulation of H1x emerges as a prognostic biomarker.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号