首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The piRNA amplification pathway in Bombyx is operated by Ago3 and Siwi in their piRISC form. The DEAD‐box protein, Vasa, facilitates Ago3‐piRISC production by liberating cleaved RNAs from Siwi‐piRISC in an ATP hydrolysis‐dependent manner. However, the Vasa‐like factor facilitating Siwi‐piRISC production along this pathway remains unknown. Here, we identify DEAD‐box polypeptide 43 (DDX43) as the Vasa‐like protein functioning in Siwi‐piRISC production. DDX43 belongs to the helicase superfamily II along with Vasa, and it contains a similar helicase core. DDX43 also contains a K‐homology (KH) domain, a prevalent RNA‐binding domain, within its N‐terminal region. Biochemical analyses show that the helicase core is responsible for Ago3‐piRISC interaction and ATP hydrolysis, while the KH domain enhances the ATPase activity of the helicase core. This enhancement is independent of the RNA‐binding activity of the KH domain. For maximal DDX43 RNA‐binding activity, both the KH domain and helicase core are required. This study not only provides new insight into the piRNA amplification mechanism but also reveals unique collaborations between the two domains supporting DDX43 function within the pathway.  相似文献   

3.
Nasopharyngeal carcinoma (NPC) is an Epstein‐Barr virus (EBV)‐associated epithelial malignancy. The high expression of BART‐miRNAs (miR‐BARTs) during latent EBV infection in NPC strongly supports their pathological importance in cancer progression. Recently, we found that several BART‐miRNAs work co‐operatively to modulate the DNA damage response (DDR) by reducing Ataxia‐telangiectasia‐mutated (ATM) activity. In this study, we further investigated the role of miR‐BARTs on DDR. The immunohistochemical study showed that the DNA repair gene, BRCA1, is consistently down‐regulated in primary NPCs. Using computer prediction programs and a series of reporter assays, we subsequently identified the negative regulatory role of BART2‐3p, BART12, BART17‐5p and BART19‐3p in BRCA1 expression. The ectopic expression of these four miR‐BARTs suppressed endogenous BRCA1 expression in EBV‐negative epithelial cell lines, whereas BRCA1 expression was enhanced by repressing endogenous miR‐BARTs activities in C666‐1 cells. More importantly, suppressing BRCA1 expression in nasopharyngeal epithelial cell lines using miR‐BART17‐5p and miR‐BART19‐3p mimics reduced the DNA repair capability and increased the cell sensitivity to the DNA‐damaging chemotherapeutic drugs, cisplatin and doxorubicin. Our findings suggest that miR‐BARTs play a novel role in DDR and may facilitate the development of effective NPC therapies.  相似文献   

4.
5.
DNA synthesis during homologous recombination is highly mutagenic and prone to template switches. Two‐ended DNA double‐strand breaks (DSBs) are usually repaired by gene conversion with a short patch of DNA synthesis, thus limiting the mutation load to the vicinity of the DSB. Single‐ended DSBs are repaired by break‐induced replication (BIR), which involves extensive and mutagenic DNA synthesis spanning up to hundreds of kilobases. It remains unknown how mutagenic BIR is suppressed at two‐ended DSBs. Here, we demonstrate that BIR is suppressed at two‐ended DSBs by proteins coordinating the usage of two ends of a DSB: (i) ssDNA annealing proteins Rad52 and Rad59 that promote second end capture, (ii) D‐loop unwinding helicase Mph1, and (iii) Mre11‐Rad50‐Xrs2 complex that promotes synchronous resection of two ends of a DSB. Finally, BIR is also suppressed when Sir2 silences a normally heterochromatic repair template. All of these proteins are particularly important for limiting BIR when recombination occurs between short repetitive sequences, emphasizing the significance of these mechanisms for species carrying many repetitive elements such as humans.  相似文献   

6.
N‐terminal sequences are important sites for post‐translational modifications that alter protein localization, activity, and stability. Dipeptidyl peptidase 9 (DPP9) is a serine aminopeptidase with the rare ability to cleave off N‐terminal dipeptides with imino acid proline in the second position. Here, we identify the tumor‐suppressor BRCA2 as a DPP9 substrate and show this interaction to be induced by DNA damage. We present crystallographic structures documenting intracrystalline enzymatic activity of DPP9, with the N‐terminal Met1‐Pro2 of a BRCA21‐40 peptide captured in its active site. Intriguingly, DPP9‐depleted cells are hypersensitive to genotoxic agents and are impaired in the repair of DNA double‐strand breaks by homologous recombination. Mechanistically, DPP9 targets BRCA2 for degradation and promotes the formation of RAD51 foci, the downstream function of BRCA2. N‐terminal truncation mutants of BRCA2 that mimic a DPP9 product phenocopy reduced BRCA2 stability and rescue RAD51 foci formation in DPP9‐deficient cells. Taken together, we present DPP9 as a regulator of BRCA2 stability and propose that by fine‐tuning the cellular concentrations of BRCA2, DPP9 alters the BRCA2 interactome, providing a possible explanation for DPP9''s role in cancer.  相似文献   

7.
Human Rap1-interacting factor 1 (RIF1) is an important player in the repair of DNA double strand breaks (DSBs). RIF1 acts downstream of 53BP1, with well-documented roles in class switch recombination in B-cells and inhibition of end resection initiation in BRCA1-defective cells. Here, we report that DEAD Box 1 (DDX1), a RNA helicase also implicated in DSB repair, interacts with RIF1, with co-localization of DDX1 and RIF1 observed throughout interphase. Recruitment of DDX1 to DSBs is dependent on RIF1, with RIF1 depletion abolishing DDX1-mediated facilitation of homologous recombination at DSBs. As previously demonstrated for RIF1, DDX1 is also required for chromatin loading of Bloom syndrome helicase (BLM) to ionizing radiation-induced DSBs, a RIF1-related activity that is independent of 53BP1. We show that DDX1 and RIF1 have different nucleic acid requirements for accumulation at DSBs, with RNA-DNA hybrids required for DDX1 accrual at DSBs, and single-strand RNA required for accumulation of RIF1 at these sites. Our data suggest both convergent and divergent roles for DDX1 and RIF1 in DSB repair, and may help explain why RIF1 depletion does not fully mimic 53BP1 ablation in the restoration of homologous recombination defects in BRCA1-deficient cells.  相似文献   

8.
The ribonuclease DIS3 is one of the most frequently mutated genes in the hematological cancer multiple myeloma, yet the basis of its tumor suppressor function in this disease remains unclear. Herein, exploiting the TCGA dataset, we found that DIS3 plays a prominent role in the DNA damage response. DIS3 inactivation causes genomic instability by increasing mutational load, and a pervasive accumulation of DNA:RNA hybrids that induces genomic DNA double‐strand breaks (DSBs). DNA:RNA hybrid accumulation also prevents binding of the homologous recombination (HR) machinery to double‐strand breaks, hampering DSB repair. DIS3‐inactivated cells become sensitive to PARP inhibitors, suggestive of a defect in homologous recombination repair. Accordingly, multiple myeloma patient cells mutated for DIS3 harbor an increased mutational burden and a pervasive overexpression of pro‐inflammatory interferon, correlating with the accumulation of DNA:RNA hybrids. We propose DIS3 loss in myeloma to be a driving force for tumorigenesis via DNA:RNA hybrid‐dependent enhanced genome instability and increased mutational rate. At the same time, DIS3 loss represents a liability that might be therapeutically exploited in patients whose cancer cells harbor DIS3 mutations.  相似文献   

9.
While PAX5 is an important tumor suppressor gene in B‐cell acute lymphoblastic leukemia (B‐ALL), it is also involved in oncogenic translocations coding for diverse PAX5 fusion proteins. PAX5‐JAK2 encodes a protein consisting of the PAX5 DNA‐binding region fused to the constitutively active JAK2 kinase domain. Here, we studied the oncogenic function of the PAX5‐JAK2 fusion protein in a mouse model expressing it from the endogenous Pax5 locus, resulting in inactivation of one of the two Pax5 alleles. Pax5 Jak2/+ mice rapidly developed an aggressive B‐ALL in the absence of another cooperating exogenous gene mutation. The DNA‐binding function and kinase activity of Pax5‐Jak2 as well as IL‐7 signaling contributed to leukemia development. Interestingly, all Pax5 Jak2/+ tumors lost the remaining wild‐type Pax5 allele, allowing efficient DNA‐binding of Pax5‐Jak2. While we could not find evidence for a nuclear role of Pax5‐Jak2 as an epigenetic regulator, high levels of active phosphorylated STAT5 and increased expression of STAT5 target genes were seen in Pax5 Jak2/+ B‐ALL tumors, implying that nuclear Pax5‐Jak2 phosphorylates STAT5. Together, these data reveal Pax5‐Jak2 as an important nuclear driver of leukemogenesis by maintaining phosphorylated STAT5 levels in the nucleus.  相似文献   

10.
The innate immune receptor RIG‐I provides a first line of defense against viral infections. Viral RNAs are recognized by RIG‐I''s C‐terminal domain (CTD), but the RNA must engage the helicase domain to release the signaling CARD (Caspase Activation and Recruitment Domain) domains from their autoinhibitory CARD2:Hel2i interactions. Because the helicase itself lacks RNA specificity, mechanisms to proofread RNAs entering the helicase domain must exist. Although such mechanisms would be crucial in preventing aberrant immune responses by non‐specific RNAs, they remain largely uncharacterized to date. This study reveals a previously unknown proofreading mechanism through which RIG‐I ensures that the helicase engages RNAs explicitly recognized by the CTD. A crucial part of this mechanism involves the intrinsically disordered CARDs‐Helicase Linker (CHL), which connects the CARDs to the helicase subdomain Hel1. CHL uses its negatively charged regions to antagonize incoming RNAs electrostatically. In addition to this RNA gating function, CHL is essential for stabilization of the CARD2:Hel2i interface. Overall, we uncover that the CHL and CARD2:Hel2i interface work together to establish a tunable gating mechanism that allows CTD‐chosen RNAs to bind the helicase domain, while at the same time blocking non‐specific RNAs. These findings also indicate that CHL could represent a novel target for RIG‐I‐based therapeutics.  相似文献   

11.
12.
The DNA damage response (DDR) is a complex signaling network that relies on cascades of protein phosphorylation, which are initiated by three protein kinases of the family of PI3‐kinase‐related protein kinases (PIKKs): ATM, ATR, and DNA‐PK. ATM is missing or inactivated in the genome instability syndrome, ataxia‐telangiectasia (A‐T). The relative shares of these PIKKs in the response to genotoxic stress and the functional relationships among them are central questions in the genome stability field. We conducted a comprehensive phosphoproteomic analysis in human wild‐type and A‐T cells treated with the double‐strand break‐inducing chemical, neocarzinostatin, and validated the results with the targeted proteomic technique, selected reaction monitoring. We also matched our results with 34 published screens for DDR factors, creating a valuable resource for identifying strong candidates for novel DDR players. We uncovered fine‐tuned dynamics between the PIKKs following genotoxic stress, such as DNA‐PK‐dependent attenuation of ATM. In A‐T cells, partial compensation for ATM absence was provided by ATR and DNA‐PK, with distinct roles and kinetics. The results highlight intricate relationships between these PIKKs in the DDR.  相似文献   

13.
Break‐induced replication (BIR) is a specialized homologous‐recombination pathway for DNA double‐strand break (DSB) repair, which often induces genome instability. In this study, we establish EGFP‐based recombination reporters to systematically study BIR in mammalian cells and demonstrate an important role of human PIF1 helicase in promoting BIR. We show that at endonuclease cleavage sites, PIF1‐dependent BIR is used for homology‐initiated recombination requiring long track DNA synthesis, but not short track gene conversion (STGC). We also show that structure formation‐prone AT‐rich DNA sequences derived from common fragile sites (CFS‐ATs) induce BIR upon replication stress and oncogenic stress, and PCNA‐dependent loading of PIF1 onto collapsed/broken forks is critical for BIR activation. At broken replication forks, even STGC‐mediated repair of double‐ended DSBs depends on POLD3 and PIF1, revealing an unexpected mechanism of BIR activation upon replication stress that differs from the conventional BIR activation model requiring DSB end sensing at endonuclease‐generated breaks. Furthermore, loss of PIF1 is synthetically lethal with loss of FANCM, which is involved in protecting CFS‐ATs. The breast cancer‐associated PIF1 mutant L319P is defective in BIR, suggesting a direct link of BIR to oncogenic processes.  相似文献   

14.
15.
16.
Repair of DNA double‐stranded breaks by homologous recombination (HR) is dependent on DNA end resection and on post‐translational modification of repair factors. In budding yeast, single‐stranded DNA is coated by replication protein A (RPA) following DNA end resection, and DNA–RPA complexes are then SUMO‐modified by the E3 ligase Siz2 to promote repair. Here, we show using enzymatic assays that DNA duplexes containing 3'' single‐stranded DNA overhangs increase the rate of RPA SUMO modification by Siz2. The SAP domain of Siz2 binds DNA duplexes and makes a key contribution to this process as highlighted by models and a crystal structure of Siz2 and by assays performed using protein mutants. Enzymatic assays performed using DNA that can accommodate multiple RPA proteins suggest a model in which the SUMO‐RPA signal is amplified by successive rounds of Siz2‐dependent SUMO modification of RPA and dissociation of SUMO‐RPA at the junction between single‐ and double‐stranded DNA. Our results provide insights on how DNA architecture scaffolds a substrate and E3 ligase to promote SUMO modification in the context of DNA repair.  相似文献   

17.
18.
Abnormally expressed long non‐coding RNAs (lncRNAs) have been recognized as potential diagnostic biomarkers or therapeutic targets in non‐small cell lung cancer (NSCLC). The role of the novel lnc‐CYB561‐5 in NSCLC and its specific biological activity remain unknown. In this study, lncRNAs highly expressed in NSCLC tissue samples compared with paired adjacent normal tissue samples and atypical adenomatous hyperplasia were identified by RNA‐seq analysis. Lnc‐CYB561‐5 is highly expressed in human NSCLC and is associated with a poor prognosis in lung adenocarcinoma. In vivo, downregulation of lnc‐CYB561‐5 significantly decreases tumour growth and metastasis. In vitro, lnc‐CYB561‐5 knockdown treatment inhibits cell migration, invasion and proliferation ability, as well as glycolysis rates. In addition, RNA pulldown and RNA immunoprecipitation (RIP) assays show that basigin (Bsg) protein interacts with lnc‐CYB561‐5. Overall, this study demonstrates that lnc‐CYB561‐5 is an oncogene in NSCLC, which is involved in the regulation of cell proliferation and metastasis. Lnc‐CYB561‐5 interacts with Bsg to promote the expression of Hk2 and Pfk1 and further lead to metabolic reprogramming of NSCLC cells.  相似文献   

19.
Epstein–Barr virus (EBV) infection is proved to be associated with clinicopathology of lymphoma. However, little is known about the relationship between EBV‐DNA status after treatment and prognosis. In this study, real‐time polymerase chain reaction (PCR) was used for quantitative detection of EBV‐DNA load in peripheral blood of all 26,527 patients with lymphoma, and the clinical characteristics and prognosis of 202 patients were retrospectively analysed, including 100 patients with positive EBV‐DNA and 102 randomly selected patients with negative EBV‐DNA. We found that the average rate of EBV‐DNA positivity in lymphomas was 0.376%, and EBV‐DNA‐positive patients presented higher risk with elevated lactate dehydrogenase (LDH) and β2‐MG level, B symptoms, secondary hemophagocytic syndrome and lower objective response rate compared to EBV‐DNA‐negative patients. Multivariate analysis revealed EBV‐DNA‐positive patients had inferior progression‐free survival (PFS) and overall survival (OS) and EBV‐DNA level before treatment was related to PFS but not OS of T/NK cell lymphoma. In T/NK cell lymphoma, EBV‐DNA converting negative after treatment was correlated with better PFS but not OS, and second‐line therapy could induce more EBV‐DNA‐negative conversion compared to CHOP‐based therapy. In all, EBV‐DNA positivity before treatment can be a biomarker representing the tumour burden and an independent prognostic factor. EBV‐DNA‐negative conversion after treatment is a good prognostic factor for T/NK cell lymphomas.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号