首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
自噬是一种以胞质内出现双层膜结构包裹长寿命蛋白和细胞器的自噬体为特征的细胞“自我消化”过程,在维持细胞内稳态、发育、肿瘤发生和感染中发挥重要作用。近来,诸多研究表明,自噬作为一把“双刃剑”,对肿瘤的发生发展既有促进作用,也有抑制作用。PI3K/Akt/mTOR通路由PI3激酶(PI3K)、蛋白激酶B(PKB/Akt)和哺乳动物类雷帕霉素靶蛋白(mTOR)3个作用分子组成,是一个中心的调节机构,对肿瘤细胞的生长与增殖有促进作用,同时对自噬进行抑制。本文就PI3K/Akt/mTOR通路与自噬及肿瘤发生发展的关系作一综述。  相似文献   

2.
目的:探讨自噬在心肌细胞缺氧损伤中的作用及分子机制。方法:体外分离培养乳鼠心肌细胞,体外建立缺氧/去血清(H/SD)模型以模拟在体的缺血环境。分别给予自噬抑制剂3-甲基腺嘌呤(3MA,5 mM)和mTOR抑制剂雷帕霉素(1.0μg/L)调节心肌细胞自噬水平。分别采用TUNEL染色检测心肌细胞凋亡,Western blot方法检测心肌细胞蛋白表达水平。结果:H/SD损伤可以显著诱导心肌细胞自噬水平(P0.05),并且细胞自噬水平可以被3-MA及雷帕霉素调节。同时,H/SD可以显著增加心肌细胞凋亡(P0.05),而给予3-MA抑制自噬水平可以减少细胞凋亡(P0.05)。相反,雷帕霉素增加自噬同样可以加重缺氧导致的心肌细胞凋亡(P0.05)。H/SD损伤过程中,心肌细胞mTOR信号通路被激活,而自噬抑制剂3-MA可以显著提高缺氧条件下心肌细胞中p-mTOR(Ser2448)的表达水平(P0.05),并增加mTOR下游分子p-p70S6k(P0.05)和p-S6(P0.05)的表达。结论:mTOR信号通路诱导的细胞自噬可能参与了缺氧损伤诱导的心肌细胞凋亡。  相似文献   

3.
本研究旨在探讨脂多糖(lipopolysaccharide, LPS)对肝细胞脂质自噬的影响及其机制。体外培养人肝癌细胞株HepG2,用0.1 mmol/L软脂酸(palmitic acid, PA)负荷,分为对照(0μg/mL LPS)组、LPS (10μg/mL)组、LPS+DMSO组、LPS+雷帕霉素(rapamycin, RAPA, 10μmol/L)组。油红O染色观察HepG2细胞内脂质积聚情况;自噬双标腺病毒mRFP-GFP-LC3转染细胞后激光共聚焦显微镜观察细胞自噬流;通过氟硼二吡咯BODIPY 493/503荧光染料和溶酶体标记物溶酶体关联膜蛋白1 (lysosomal associated membrane protein 1, LAMP1)进行脂滴和溶酶体的共定位,反映细胞内脂质自噬水平;Western blot检测哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)、p-mTOR、核糖体S6激酶1 (ribosome protein subunit 6 kinase 1,S6K1)、p-S6K1、LC3II/I、P62蛋白表达。结果显示,与对照组相比,LPS组细胞油红O染色红染脂滴增加,自噬体增加,自噬溶酶体明显降低,LAMP1/BODIPY共定位率降低(P 0.05),p-mTOR/mTOR、p-S6K1/S6K1和LC3II/LC3I比值升高,P62蛋白表达增加(P 0.05)。加入RAPA干预后,与LPS+DMSO组相比,自噬体减少,自噬溶酶体明显增加,LAMP1/BODIPY共定位率升高(P 0.05),肝细胞油红O染色红染脂滴减少(P 0.001)。综上,LPS通过激活mTOR通路抑制HepG2细胞脂质自噬,从而加重细胞内脂质积聚。  相似文献   

4.
探讨缺氧环境下,白细胞介素8(Interleukin-8,IL-8)对人骨髓间充质干细胞(Human bone marrow mesenchymal stem cells,hBMSC)增殖和自噬能力的影响以及机制。在缺氧模型下,未进行刺激的hBMSC为缺氧对照组;以100μmol/L人IL-8蛋白刺激的MSC为IL-8组;若先添加50μmol/L MK2206(Akt蛋白抑制剂)培养30 min,然后再添加100μmol/L IL-8则为Akt抑制剂组,在正常条件下培养的MSC为正常对照组。利用Ed U细胞增殖实验、TUNEL细胞凋亡实验、Western blotting或ELISA等实验分别检测各组MSC细胞Ed U标记阳性细胞的数目、细胞凋亡、自噬蛋白(LC-3)和Akt/STAT3等蛋白的表达。相对于缺氧对照组和Akt抑制剂组,IL-8明显提高hBMSC增殖和细胞自噬,并降低hBMSC的凋亡率,IL-8组hBMSC的Akt、STAT3和VEGF等蛋白表达增高。结果表明,缺氧环境下,IL-8通过Akt-STAT3通路发挥对MSC的保护作用,对保护MSC抗缺血缺氧性损伤,促进MSC在再生医学中应用具有重要意义。  相似文献   

5.
目的: 观察丙泊酚对转化生长因子-β1(TGF-β1)诱导的肝星状细胞系HSC2-T6细胞激活的影响并探讨其可能的作用机制。方法: 实验分为对照组、TGF-β1组、丙泊酚组、TGF-β1+丙泊酚组、雷帕霉素组、TGF-β1+丙泊酚+雷帕霉素组。先用含雷帕霉素(5 μmol/L)DMEM培养液培养1 h,用丙泊酚(100 μmol/L)处理1 h,然后再加入TGF-β1(5 ng/ml)继续共同培养24 h。细胞的增殖水平通过MTT法测量,细胞培养液上清中透明质酸(HA)、IV型胶原(IV-C)和层粘连蛋白(LN)的浓度采用ELISA法测量,细胞的超微结构采用透射电镜观测,α-平滑肌肌动蛋白(α-SMA)、哺乳动物雷帕霉素靶蛋白(mTOR)、磷酸化mTOR(p-mTOR)及自噬相关基因Beclin 1、微管相关蛋白1轻链3(LC3)和p62的表达通过Western blot测量。结果: 与对照组比较,TGF-β1组细胞增殖、α-SMA蛋白的表达、培养液上清中HA、IV-C和LN的浓度、自噬体数量、Beclin-1和LC3-Ⅱ的蛋白表达及LC3-Ⅱ/LC3-Ⅰ比值显著性增加(P均<0.05),p-mTOR蛋白的表达和p-mTOR/mTOR比值及p62的蛋白表达显著性降低(P均<0.05)。与TGF-β1组比较,丙泊酚+TGF-β1组细胞增殖、α-SMA蛋白的表达、培养液上清中HA、IV-C和LN的浓度、自噬体数量、Beclin-1和LC3-Ⅱ的蛋白表达及LC3-Ⅱ/LC3-Ⅰ比值均显著性降低(P均<0.05),p-mTOR蛋白表达和p-mTOR/TOR比值及p62的蛋白表达均显著性增加(P均<0.05)。mTOR抑制剂雷帕霉素部分逆转丙泊酚的作用。结论: 丙泊酚抑制TGFβ1诱导的肝星状细胞激活,其机制涉及mTOR-自噬途径。  相似文献   

6.
目的:研究姜黄素联合索拉菲尼对肝癌细胞系HepG-2细胞增殖及自噬的影响。方法:体外培养肝癌细胞系HepG-2细胞,用不同浓度姜黄素(0、10、20、30、40、50 mmol/L)、不同浓度索拉菲尼(0、5、10、15、20μmol/L)及两药联合处理肝癌细胞系HepG-2细胞24 h后,用CCK8实验检测细胞存活率。用姜黄素30 mmol/L、索拉菲尼10μmol/L及两药联合处理肝癌细胞系HepG-2细胞24 h后,用荧光定量PCR检测自噬相关信号通路关键蛋白AKT、mTOR及自噬相关蛋白LC3-Ⅱ的mRNA表达情况。结果:姜黄素、索拉菲尼及两药联合对HepG-2细胞均有增殖抑制作用,且呈浓度依赖性。与姜黄素或索拉菲尼单药组相比,姜黄素联合索拉菲尼组能显著抑制肝癌细胞系HepG-2细胞的增殖(P0.001);能显著抑制AKT、mTOR的mRNA表达而增加自噬相关蛋白LC3-Ⅱ的mRNA的表达(P0.001)。结论:姜黄素联合索拉菲尼组抑制肝癌细胞系HepG-2细胞增殖作用较单药组明显增强,两药联合协同诱导肝癌细胞系HepG2细胞产生自噬,其作用机制可能与抑制PI3K/AKT/mTOR信号通路有关。  相似文献   

7.
目的:研究雷帕霉素对人胰腺癌细胞SW1990的mTOR信号通路的影响。方法:采用免疫细胞化学证实mTOR信号通路的存在,通过CCK-8法研究雷帕霉素对胰腺癌细胞增殖的影响,通过Western blot和real time PCR分别从蛋白水平和基因水平研究雷帕霉素对mTOR及其下游分子的表达。结果:免疫细胞化学结果显示p-mTOR、p-p70S6K、p-4E-BP1在细胞质中均呈阳性;CCK-8法显示雷帕霉素能明显抑制细胞增殖(P<0.05);Western blot结果显示随着雷帕霉素浓度的增加,p-mTOR、p-p70S6K表达明显减少,而p-4E-BP1蛋白表达明显增加(P<0.05);Real-time PCR结果显示随雷帕霉素浓度的增加,CyclinD1、VEGF、c-myc基因表达明显减少(P<0.05)。结论:人胰腺癌细胞系SW1990中存在mTOR信号通路并处于激活状态;雷帕霉素抑制胰腺癌细胞增殖与雷帕霉素抑制mTOR信号通路活化有关。  相似文献   

8.
自噬在细胞复制性衰老中起着重要的作用.然而,早老细胞中的自噬现象基本无相关的报道.本文通过外源性过氧化氢(H2O2)的诱导,构建人胚肺二倍体成纤维细胞(2BS细胞)早老模型.首先,通过SA-β-gal染色,验证细胞早老;从形态学和特异标志分子及雷帕霉素作用的靶位点(mTOR)信号通路不同角度检测自噬的变化,其中形态学检测包括丹(磺)酰戊二胺(MDC)自噬分子定量法及电镜自噬超微结构的观察;特异标志分子LC3的检测包括GFP-LC3自噬定位法和免疫印迹法检测LC3;及检测mTOR信号通路下游激酶p70S6蛋白的表达变化.结果表明,过氧化氢诱导的早老细胞中自噬体相对年轻细胞明显增多,且具有保护早老细胞的作用.  相似文献   

9.
自噬是一种以胞质内出现双层膜结构包裹长寿命蛋白和细胞器的自噬体为特征的细胞"自我消化"过程,在维持细胞内稳态、发育、肿瘤发生和感染中发挥重要作用。近来,诸多研究表明,自噬作为一把"双刃剑",对肿瘤的发生发展既有促进作用,也有抑制作用。PI3K/Akt/m TOR通路由PI3激酶(PI3K)、蛋白激酶B(PKB/Akt)和哺乳动物类雷帕霉素靶蛋白(m TOR)3个作用分子组成,是一个中心的调节机构,对肿瘤细胞的生长与增殖有促进作用,同时对自噬进行抑制。本文就PI3K/Akt/m TOR通路与自噬及肿瘤发生发展的关系作一综述。  相似文献   

10.
为探讨雷帕霉素对D-葡萄糖诱导的人肾小球足细胞增殖、迁移和上皮–间质转化(EMT)的影响及磷脂酰肌醇-3-激酶/丝氨酸–苏氨酸激酶(PI3K/AKT)信号通路的调控作用,该研究体外培养人肾小球足细胞HGPC细胞系,并将其分为对照组(5 mmol/L的D-葡萄糖)、高糖组(30 mmol/L的D-葡萄糖)、低/中/高浓度组(在30 mmol/L的D-葡萄糖的基础上加入2.5、5.0、10.0μmol/L雷帕霉素),用酶联免疫吸附实验(ELISA)、细胞计数试剂盒8(CCK-8)测定炎症因子白细胞介素-8(IL-8)和肿瘤坏死因子-α(TNF-α)的表达水平及细胞活力,筛选出最适雷帕霉素后,又将细胞分为对照组、高糖组、雷帕霉素组、LY294002组(30 mmol/L的D-葡萄糖+10μmol/L PI3K/AKT通路抑制剂LY294002)、雷帕霉素+LY294002组(30 mmol/L的D-葡萄糖+10.0μmol/L雷帕霉素+10μmol/L PI3K/AKT通路抑制剂LY294002)和雷帕霉素+SC79组(30 mmol/L的D-葡萄糖+10.0μmol/L雷帕霉素+10μmo...  相似文献   

11.
姜黄素类似物EF24诱导A549细胞自噬及凋亡关系的研究   总被引:1,自引:0,他引:1  
从细胞自噬及凋亡关系角度探讨姜黄素类似物EF24对人肺腺癌细胞(A549)的杀伤机理。选用不同浓度的EF24对体外培养的A549处理,采用MTT方法检查细胞存活率,吖啶橙染色观察细胞形态,蛋白质免疫印迹(Western blot)方法检测与细胞自噬及凋亡相关蛋白的表达及对AMPK-mTOR-S6K信号通路的影响。结果显示,EF24作用24 h的IC50为8.5μmol/L,对A549细胞生长抑制作用优于姜黄素,而接近顺铂。自噬及凋亡蛋白检测显示,在4μmol/L、8μmol/L时A549细胞以自噬为主,在16μmol/L时以凋亡为主;加入100 nmol/L自噬抑制剂渥曼青霉素(wortmannin)后,细胞存活率同比升高。同时还发现,随着EF24浓度的增加,细胞内AMPK-Thr172磷酸化水平上升,mTOR-Ser2481、S6K-Thr389磷酸化水平的下调。由此可见,EF24可通过AMPK的激活下调mTOR-S6K途径抑制细胞生长,在EF24浓度4~8μmol/L范围内,自噬对凋亡起到促进作用。  相似文献   

12.
目的 雷帕霉素是小分子mTOR抑制剂,可激活细胞自噬.本研究检测了雷帕霉素对胚胎干细胞(ES细胞)向心肌分化的影响.方法 采用拟胚体(embryoid body,EB)加抗坏血酸诱导ES细胞向心肌分化.悬浮诱导阶段添加自噬激动剂雷帕霉素或抑制剂羟氯喹,通过免疫印迹检测LC3蛋白剪切以监测细胞自噬水平,通过检测EB球的心...  相似文献   

13.
该文探讨了磷脂酰肌醇3-激酶(PI3K)/蛋白激酶B(Akt)/哺乳动物雷帕霉素靶蛋白(mTOR)信号通路在脂多糖(LPS)诱导的大鼠肝星状细胞-T6(HSC-T6)自噬中的作用。体外培养HSCT6细胞,随机分为对照组、LPS组、雷帕霉素(Rapamycin, Rapa)组、LPS+Rapa组、LY294002组、LPS+LY294002组, SC79组、LPS+SC79组,各组经相应处理后,单丹磺酰尸胺(MDC)染色法观察自噬溶酶体变化;细胞免疫荧光法检测各组微管相关蛋白轻链Ⅱ(LC3 Ⅱ)表达; Western blot检测各组通路蛋白p-Akt、p-mTOR、Akt、mTOR及自噬相关蛋白LC3 Ⅱ、Beclin1的表达; qRT-PCR检测各组LC3 Ⅱ和Beclin1 mRNA的表达。结果显示,LPS+Rapa组、LPS+LY294002组较LPS组的自噬溶酶体、LC3 Ⅱ荧光亮点含量无明显差异(P0.05), LPS+SC79组较LPS组的自噬溶酶体、LC3 Ⅱ荧光亮点含量明显减少(P0.05); Western blot显示, LPS+Rapa组、LPS+LY294002组较LPS组LC3 Ⅱ、Beclin1、p-Akt、p-mTOR蛋白表达水平无明显差异(P0.05), LPS+SC79组较LPS组LC3 Ⅱ、Beclin1含量明显减少, p-Akt、p-mTOR蛋白表达水平明显增加(P0.05); qRT-PCR显示LPS+Rapa组、LPS+LY294002组较LPS组LC3 Ⅱ、Beclin1 mRNA含量无明显差异(P0.05), LPS+SC79组较LPS组LC3 Ⅱ、Beclin1 mRNA含量明显减少(P0.05)。该项研究结果表明,LPS可能通过抑制PI3K/Akt/mTOR信号通路促进HSC-T6细胞自噬。  相似文献   

14.
在细胞及动物个体水平探讨姜黄素类似物EF25-(GSH)2的抗肝癌作用。用不同浓度的EF25-(GSH)2处理体外培养的肝癌细胞、正常肝细胞以及HepG2荷瘤裸鼠,MTT法检测细胞存活率,电镜及激光共聚焦显微镜观察细胞形态,蛋白质免疫印迹法(Western blot)检测AMPK/Akt/mTOR相关通路蛋白磷酸化水平的变化。结果显示,EF25-(GSH)2对HepG2作用48 h的IC50为7.2μmol/L,对其生长抑制作用明显优于姜黄素及顺铂,且对正常细胞的杀伤作用较小。形态学观察到细胞中有自噬现象的发生。免疫印迹法结果提示,EF25-(GSH)2可能通过AMPK/Akt/mTOR的相关通路抑制肿瘤细胞生长。对肝癌模型裸鼠的实验显示,给药后的肿瘤体积明显缩小。该实验结果证明,EF25-(GSH)2具有良好的作为肝癌治疗药物的开发前景。  相似文献   

15.
该研究旨在探讨乳酸脱氢酶A(lactate dehydrogenase A,LDHA)对人脑胶质瘤细胞线粒体自噬的影响。用质粒sh-EGFP或sh-LDHA转染人脑胶质瘤细胞株U87MG,qRT-PCR和Western blot检测干扰效率,荧光染色技术检测线粒体ROS水平及线粒体膜电位,Western blot检测线粒体自噬相关蛋白及AMPK信号通路相关蛋白表达。结果表明,与sh-EGFP组相比较,sh-LDHA组人脑胶质瘤细胞U87MG中LDHA的mRNA及蛋白质水平均显著降低,线粒体ROS的产生增加,线粒体膜电位明显降低,线粒体自噬相关蛋白PINK1、Parkin及BNIP3、BNIP3L的表达增高,AMPK的磷酸化水平明显升高,而mTOR的磷酸化水平降低。研究结果表明,LDHA能够通过抑制AMPK信号通路,降低线粒体ROS水平,提高线粒体膜电位,抑制线粒体自噬。  相似文献   

16.
摘要 目的:研究二甲双胍通过磷脂酰肌醇3激酶(PI3K)/蛋白激酶 B(Akt)/哺乳动物雷帕霉素靶蛋白(mTOR)信号通路对结肠癌HCT116 细胞的作用。方法:体外培养结肠癌HCT116细胞,分别加入二甲双胍(20,40,80 μmol/L)处理HCT116细胞48 h,另设对照组。MTT法检测各组细胞增殖能力。Transwell实验检测各组细胞侵袭能力的变化。Annexin-FITC/PI 双染法分别检测各组处理48 h后细胞凋亡情况。免疫印迹法检测48 h后PI3K/Akt/mTOR通路蛋白表达水平。结果:相比于对照组,二甲双胍20,40,80 μmol/L各处理组对HCT116细胞的增殖具有明显的抑制作用,且呈浓度依赖效应,差异具有统计学意义(P<0.05)。与对照组比较,二甲双胍20,40,80 μmol/L各处理组细胞凋亡率明显较高,且呈浓度依赖效应,差异具有统计学意义(P<0.05)。相比于对照组,二甲双胍20,40,80 μmol/L各处理组HCT116细胞侵袭能力明显减弱,且呈浓度依赖效应,差异具有统计学意义(P <0.05)。与对照组比较,二甲双胍20,40,80 μmol/L各处理组Bax蛋白表达水平明显升高,而Bcl-2、p-Akt及p-mTOR蛋白表达水平明显降低,且呈浓度依赖效应,差异具有统计学意义(P<0.05)。结论:二甲双胍在体外可抑制人结肠癌HCT-116细胞的增殖,促进其凋亡,抑制其侵袭能力,其抗肿瘤机制可能与抑制PI3K/Akt/mTOR 信号通路激活相关。  相似文献   

17.
目的:探讨白藜芦醇甙在高糖处理的大鼠心肌微血管内皮细胞损伤中的作用及其可能调控机制。方法:酶消法分离大鼠CMECs,高糖处理CMECs建立细胞损伤模型,实验随机分为6个组:对照组(葡萄糖浓度为5.5 mmol/L)、白藜芦醇甙组、高糖组(葡萄糖浓度为33 mmol/L)、高糖+白藜芦醇甙组、高糖+白藜芦醇甙+3-MA(自噬抑制剂)组和高糖+雷帕霉素(自噬诱导剂)组。白藜芦醇甙组和高糖+白藜芦醇甙组分别加入10μmol/L的白藜芦醇甙孵育24 h,高糖+白藜芦醇甙+3-MA组加入10μmol/L的白藜芦醇甙和10μmmol/L 3-MA孵育24 h,高糖+雷帕霉素组加入100 nmol/L的雷帕霉素孵育24小时。CCK-8实验检测大鼠CMECs增殖;Tunel法检测大鼠CMECs凋亡;FITC-葡聚糖清除实验检测单层CMECs通透性;Western blot检测LC3Ⅱ和p62的表达。结果:与对照组和白藜芦醇甙组相比,高糖组CMECs增殖能力降低(P<0.05),凋亡率显著增加(P<0.05),细胞通透性增加(P<0.05),LC3Ⅱ表达降低(P<0.05),p62的表达增加(P<0.05);与高糖组相比,高糖+白藜芦醇甙组和高糖+雷帕霉素组CMECs增殖能力增加(P<0.05),凋亡率显著降低(P<0.05),细胞通透性降低(P<0.05),LC3Ⅱ表达增加(P<0.05),p62的表达降低(P<0.05);与高糖+白藜芦醇甙组相比,高糖+白藜芦醇甙+3-MA组CMECs增殖能力降低(P<0.05),凋亡率显著增加(P<0.05),细胞通透性增加(P<0.05),LC3Ⅱ表达降低(P<0.05),p62的表达增加(P<0.05)。结论:白藜芦醇甙通过增加自噬减轻高糖处理的大鼠心肌微血管内皮细胞损伤。  相似文献   

18.
白藜芦醇(resveratrol)可抑制人肾癌786-O细胞增殖,并诱导其凋亡,但是白藜芦醇对786-O细胞自噬(autophagy)的影响及机制尚不清楚。为探究其机制,体外培养786-O细胞,采用CCK-8检测786-O细胞活力;TUNEL染色检测786-O细胞凋亡;透射电子显微镜观察786-O细胞自噬体;吖啶橙染色观察786-O细胞自噬小泡;GFP-LC3质粒转染分析观察786-O细胞自噬体;Western印迹检测LC3、beclin-1、PI3K、p-PI3K、Akt、p-Akt、mTOR和p-mTOR的表达。结果显示,白藜芦醇以浓度和时间依赖性的方式抑制786-O细胞活力,并诱导细胞凋亡;与对照组相比,白藜芦醇使786-O细胞自噬增强;Western印迹结果显示,与对照组相比,白藜芦醇组LC3-II/LC3-I和Beclin-1显著增高(P0.01),表明白藜芦醇导致786-O细胞自噬体积累。与对照组相比,白藜芦醇使786-O细胞的p-PI3K/PI3K,p-Akt/Akt和p-mTOR/mTOR显著降低(P0.01),表明白藜芦醇可通过PI3K/Akt/mTOR信号通路增强自噬。综上所述,白藜芦醇通过抑制PI3K/Akt/mTOR信号通路从而诱导786-O细胞自噬。  相似文献   

19.
衰老引起多器官功能衰减,导致各种衰老相关代谢、心血管重大疾病发生和发展.哺乳动物雷帕霉素靶蛋白/雷帕霉素机能靶蛋白(mammalian/mechanistic target of rapamycin,mTOR)信号通路作为生长、发育、代谢、免疫、癌症等生理活动的主要调控者,通过影响细胞自噬、内质网应激、线粒体等形成复杂调控网络,在衰老与长寿中发挥关键作用.mTOR信号通路与许多衰老相关重大疾病(如代谢综合征、心血管疾病、神经退行性病变、肿瘤等)的发生发展密切相关,故以mTOR为靶点的药物开发与应用是未来延缓衰老及治疗衰老相关疾病的热点之一.  相似文献   

20.
哺乳动物雷帕霉素靶(mTOR)和蛋白激酶B(Akt/PKB)与肿瘤发生的密切关系已被广泛地认可.mTOR是一种丝/苏氨酸激酶,可以通过影响mRNA转录、代谢、自噬等方式调控细胞的生长.它既是PI3K的效应分子,也可以是PI3K的反馈调控因子.mTORC1 和mTORC2是mTOR的两种不同复合物. 对雷帕霉素敏感的mTORC1受到营养、生长因子、能量和应激4种因素的影响.生长因子通过PI3K/Akt信号通路调控mTORC1是最具特征性调节路径.而mTORC2最为人熟知的是作为Akt473磷酸化位点的上游激酶. 同样,Akt/PKB在细胞增殖分化、迁移生长过程中发挥着重要作用. 随着Thr308和Ser473两个位点激活,Akt/PKB也得以全面活化.因此,mTORC2-Akt-mTORC1的信号通路在肿瘤形成和生长中是可以存在的.目前临床肿瘤治疗中,PI3K/Akt/mTOR是重要的靶向治疗信号通路.然而,仅抑制mTORC1活性,不是所有的肿瘤都能得到预期控制.雷帕霉素虽然能抑制mTORC1,但也能反馈性地增加PI3K信号活跃度,从而影响治疗预后.近来发现的第二代抑制剂可以同时抑制mTORC1/2和PI3K活性,这种抑制剂被认为在肿瘤治疗上颇具前景.本综述着重阐述了PI3K/Akt/mTOR信号通路的传导、各因子之间的相互调控以及相关抑制剂的发展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号