首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ethanol production process of a Swedish alcohol production plant was dominated by Dekkera bruxellensis and Lactobacillus vini, with a high number of lactic acid bacteria. The product quality, process productivity, and stability were high; thus, D. bruxellensis and L. vini can be regarded as commercial ethanol production organisms.  相似文献   

2.
This work describes the effects of the presence of the yeast Dekkera bruxellensis and the bacterium Lactobacillus vini on the industrial production of ethanol from sugarcane fermentation. Both contaminants were quantified in industrial samples, and their presence was correlated to a decrease in ethanol concentration and accumulation of sugar. Then, laboratory mixed-cell fermentations were carried out to evaluate the effects of these presumed contaminants on the viability of Saccharomyces cerevisiae and the overall ethanol yield. The results showed that high residual sugar seemed the most significant factor arising from the presence of D. bruxellensis in the industrial process when compared to pure S. cerevisiae cultures. Moreover, when L. vini was added to S. cerevisiae cultures it did not appear to affect the yeast cells by any kind of antagonistic effect under stable fermentations. In addition, when L. vini was added to D. bruxellensis cultures, it showed signs of being able to stimulate the fermentative activity of the yeast cells in a way that led to an increase in the ethanol yield.  相似文献   

3.
4.
In this paper we describe the development of a PCR protocol to specifically detect Brettanomyces bruxellensis and B. anomalus. Primers DB90F and DB394R, targeting the D1-D2 loop of the 26S rRNA gene, were able to produce amplicons only when the DNA from these two species were used. No amplification product was obtained when DNA from other Brettanomyces spp. or wine yeasts were used as the templates. The 305-bp product was subjected to restriction enzyme analysis with DdeI to differentiate between B. bruxellensis and B. anomalus, and each species could be identified on the basis of the different restriction profiles. After optimization of the method by using strains from international collections, wine isolates were tested with the method proposed. Total agreement between traditional identification and molecular identification was observed. The protocol developed was also used for direct detection of B. bruxellensis and B. anomalus in wines suspected to be spoiled by Brettanomyces spp. Application of culture-based and molecular methods led us to the conclusion that 8 of 12 samples were spoiled by B. bruxellensis. Results based on the application of molecular methods suggested that two of the eight positive samples had been infected more recently, since specific signals were obtained at both the DNA and RNA levels.  相似文献   

5.
In this paper we describe the development of a PCR protocol to specifically detect Brettanomyces bruxellensis and B. anomalus. Primers DB90F and DB394R, targeting the D1-D2 loop of the 26S rRNA gene, were able to produce amplicons only when the DNA from these two species were used. No amplification product was obtained when DNA from other Brettanomyces spp. or wine yeasts were used as the templates. The 305-bp product was subjected to restriction enzyme analysis with DdeI to differentiate between B. bruxellensis and B. anomalus, and each species could be identified on the basis of the different restriction profiles. After optimization of the method by using strains from international collections, wine isolates were tested with the method proposed. Total agreement between traditional identification and molecular identification was observed. The protocol developed was also used for direct detection of B. bruxellensis and B. anomalus in wines suspected to be spoiled by Brettanomyces spp. Application of culture-based and molecular methods led us to the conclusion that 8 of 12 samples were spoiled by B. bruxellensis. Results based on the application of molecular methods suggested that two of the eight positive samples had been infected more recently, since specific signals were obtained at both the DNA and RNA levels.  相似文献   

6.
7.
8.
When the genome organizations of 30 native isolates belonging to a wine spoilage yeast, Dekkera (Brettanomyces) bruxellensis, a distant relative of Saccharomyces cerevisiae, were examined, the numbers of chromosomes varied drastically, from 4 to at least 9. When single gene probes were used in Southern analysis, the corresponding genes usually mapped to at least two chromosomal bands, excluding a simple haploid organization of the genome. When different loci were sequenced, in most cases, several different haplotypes were obtained for each single isolate, and they belonged to two subtypes. Phylogenetic reconstruction using haplotypes revealed that the sequences from different isolates belonging to one subtype were more similar to each other than to the sequences belonging to the other subtype within the isolate. Reanalysis of the genome sequence also confirmed that partially sequenced strain Y879 is not a simple haploid and that its genome contains approximately 1% polymorphic sites. The present situation could be explained by (i) a hybridization event where two similar but different genomes have recently fused together or (ii) an event where the diploid progenitor of all analyzed strains lost a regular sexual cycle, and the genome started to accumulate mutations.Recent achievements in genome sequencing have revealed that gene contents vary among distantly related organisms but are relatively constant among closely related species. For example, among hemiascomycete yeasts, which originated more than 250 million years ago and include well-studied yeasts such as Saccharomyces cerevisiae and Candida albicans (3, 4), an average genome contains approximately 5,000 genes. Approximately one-half of the protein-coding gene families are preserved in all of the yeasts sequenced to date. However, there is a large variation in the gene order and configuration of chromosomes among different species.Chromosome configuration is usually well preserved among populations belonging to the same species. Only rarely do geographically separated populations, for example, Mus musculus (8, 32), differ in the number and form of chromosomes. The mutability of the genome enhances the adaptability of the species, but it also decreases the viability of the new variant. In addition, these changes can preclude successful reproduction and can be a decisive factor in the emergence of new species (2; for a review, see references 6 and 7).Among closely related yeasts belonging to the Saccharomyces sensu stricto clade (including S. cerevisiae), which originated approximately 20 million years ago, the gene contents are relatively similar (13). Their genomes are almost colinear and consist of 16 chromosomes. Some inter- and intraspecific variations are observed predominantly at the chromosome ends (18, 19). Sensu stricto species are semifertile, meaning that they can successfully mate and produce F1 offspring but that the hybrids are largely sterile. It appears that this clade has still not completed the speciation process (7). The relatively low chromosome variability among Saccharomyces sensu stricto yeasts is probably promoted by regular sexual cycles. These yeasts are diploid, but heterozygosity is almost absent because of the homothallic life-style, which enables haploid spores from the same yeast cell to mate. Only for “sterile” hybrids, such as the lager brewing yeast Saccharomyces pastorianus (Saccharomyces carlsbergensis), originating upon the mating of two different species, has a pronounced heterozygosity been observed (14). The parental genomes came from S. cerevisiae and a close relative, Saccharomyces bayanus. A study of allotetraploid hybrids between a diploid S. cerevisiae strain and a diploid S. bayanus strain demonstrated that these hybrids behave essentially as diploids regarding meiosis and sporulation and had 77% spore viability (1, 22). The extent of intra- and interspecific genome variability is not well known for other yeasts, especially among distant relatives of S. cerevisiae. The only well-studied exception is a pathogen, Candida albicans, that is believed to be predominantly asexual. This yeast diverged from the S. cerevisiae lineage prior to the origin of the efficient homothallic life-style (reviewed in reference 25). The genome is diploid and shows a low level of heterozygosity (12), and large variations in the configurations of the chromosomes among different isolates have been reported (reviewed in reference 29).Dekkera bruxellensis is often isolated in wineries and is well known as a major microbial cause of wine spoilage. The lineages of D. bruxellensis and S. cerevisiae separated at approximately the same time as the lineages of S. cerevisiae and C. albicans separated, approximately 200 million years ago (40). However, D. bruxellensis and S. cerevisiae share several characteristics, such as the production of ethanol, the ability to propagate in the absence of oxygen (anaerobic growth), and petite positivity (the ability to produce offspring without mitochondrial DNA [mtDNA]), that are rarely found among other yeasts (16, 20). So far, a sexual cycle in D. bruxellensis has not been found.In this paper, we analyzed the genome structures of 30 isolates of D. bruxellensis originating from different geographical localities around the world. We show that these isolates have different numbers and sizes of chromosomes and also that the numbers of copies of several analyzed genes and their sequences vary. In addition, we could detect heterozygosity in the partial genome sequence of strain Y879.  相似文献   

9.
Traditional methods to detect the spoilage yeast Dekkera bruxellensis from wine involve lengthy enrichments. To overcome this difficulty, we developed a quantitative real-time PCR method to directly detect and enumerate D. bruxellensis in wine. Specific PCR primers to D. bruxellensis were designed to the 26S rRNA gene, and nontarget yeast and bacteria common to the winery environment were not amplified. The assay was linear over a range of cell concentrations (6 log units) and could detect as little as 1 cell per ml in wine. The addition of large amounts of nontarget yeasts did not impact the efficiency of the assay. This method will be helpful to identify possible routes of D. bruxellensis infection in winery environments. Moreover, the time involved in performing the assay (3 h) should enable winemakers to more quickly make wine processing decisions in order to reduce the threat of spoilage by D. bruxellensis.  相似文献   

10.
Traditional methods to detect the spoilage yeast Dekkera bruxellensis from wine involve lengthy enrichments. To overcome this difficulty, we developed a quantitative real-time PCR method to directly detect and enumerate D. bruxellensis in wine. Specific PCR primers to D. bruxellensis were designed to the 26S rRNA gene, and nontarget yeast and bacteria common to the winery environment were not amplified. The assay was linear over a range of cell concentrations (6 log units) and could detect as little as 1 cell per ml in wine. The addition of large amounts of nontarget yeasts did not impact the efficiency of the assay. This method will be helpful to identify possible routes of D. bruxellensis infection in winery environments. Moreover, the time involved in performing the assay (3 h) should enable winemakers to more quickly make wine processing decisions in order to reduce the threat of spoilage by D. bruxellensis.  相似文献   

11.
AIMS: To identify and characterize the main contaminant yeast species detected in fuel-ethanol production plants in Northeast region of Brazil by using molecular methods. METHODS AND RESULTS: Total DNA from yeast colonies isolated from the fermentation must of industrial alcohol plants was submitted to PCR fingerprinting, D1/D2 28S rDNA sequencing and species-specific PCR analysis. The most frequent non-Saccharomyces cerevisiae isolates were identified as belonging to the species Dekkera bruxellensis, and several genetic strains could be discriminated among the isolates. The yeast population dynamics was followed on a daily basis during a whole crop harvesting period in a particular industry, showing the potential of D. bruxellensis to grow faster than S. cerevisiae in industrial conditions, causing recurrent and severe contamination episodes. CONCLUSIONS: The results showed that D. bruxellensis is one of the most important contaminant yeasts in distilleries producing fuel-ethanol from crude sugar cane juice, specially in continuous fermentation systems. SIGNIFICANCE AND IMPACT OF THE STUDY: Severe contamination of the industrial fermentation process by Dekkera yeasts has a negative impact on ethanol yield and productivity. Therefore, early detection of D. bruxellensis in industrial musts may avoid operational problems in alcohol-producing plants.  相似文献   

12.
13.
14.
Aims:  Brettanomyces / Dekkera bruxellensis is a particularly troublesome wine spoilage yeast. This work was aimed at characterizing its behaviour in terms of growth and volatile compound production in red wine.
Methods and Results:  Sterile red wines were inoculated with 5 × 103 viable cells ml−1 of three B. bruxellensis strains and growth and volatile phenol production were followed for 1 month by means of plate counts and gas chromatography-mass spectrometry (GC-MS) respectively. Maximum population levels generally attained 106–107 colony forming units (CFU) ml−1 and volatile phenol concentrations ranged from 500 to 4000 μg l−1. Brettanomyces bruxellensis multiplication was also accompanied by the production of organic acids (from C2 to C10), short chain acid ethyl-esters and the 'mousy off-flavour' component 2-acetyl-tetrahydropyridine.
Conclusions:  Different kinds of 'Brett character' characterized by distinct metabolic and sensory profiles can arise in wine depending on the contaminating strain, wine pH and sugar content and the winemaking stage at which contamination occurs.
Significance and Impact of the Study:  We identified new chemical markers that indicate wine defects caused by B. bruxellensis. Further insight was provided into the role of some environmental conditions in promoting wine spoilage.  相似文献   

15.
16.
Aims: To investigate whether the presence of Pichia guilliermondii impacts on the production of volatile phenols from mixed wine fermentations with Dekkera bruxellensis and Saccharomyces cerevisiae. Methods and Results: Four inoculation strategies were performed in small‐scale fermentations involving P. guilliermondii, D. bruxellensis and S. cerevisiae using Syrah grape juice supplemented with 100 mg l?1 of p‐coumaric acid. High pressure liquid chromatography was used for the quantification or volatile phenols. Significant high levels of 4‐ethylphenol and 4‐ethylguaicol (720 and 545 μg l?1, respectively), as well as the highest levels of 4‐vinylphenol (>4500 μg l?1), were observed when P. guilliermondii species was inoculated from the beginning of the fermentation. Conclusions: The metabolic interaction occurring between the high vinylphenol producer species P. guilliermondii and D. bruxellensis exhibiting a high vinylphenol reductase activity resulted in an increased production of volatile phenols in wine. Significance and Impact of the Study: Pichia guilliermondii must be considered a very important spoilage yeast in the wine industry capable of producing large amounts of volatile phenols.  相似文献   

17.
The wine spoilage yeast Dekkera bruxellensis was evaluated for the production of 4-ethylphenol under low concentrations (0.02-20 g L(-1)) of glucose and fructose in synthetic media. Measurable amounts of 4-ethylphenol were produced over 0.2 g L(-1) of each sugar. The yeast growth rate and amount of biomass formed increased from 0.2 to 20 g L(-1) of glucose or fructose, being accompanied by increasing production of 4-ethylphenol. In red wines, the production of 4-ethylphenol was only observed in the presence of growing populations of indigenous or inoculated strains of D. bruxellensis. The production rate of 4-ethylphenol varied between 22 and 93 mug day(-1) either with inoculated strains or wild populations in bottled wines. The production rate of 4-ethylphenol as a function of the increase in the number of cells varied from 349 to 1882 mug L(-1) per one log CFU mL(-1). The effect of temperature on cellular viability and 4-ethylphenol production was tested in red wines with indigenous or inoculated strains of D. bruxellensis. Incubation temperatures of 15, 20 and 25 degrees C allowed cellular growth and volatile phenol production. Increasing incubation temperatures to 36 degrees C induced full viability loss of 10 strains of D. bruxellensis within <12 h.  相似文献   

18.
Viability and culturability of eight Dekkera bruxellensis strains in wine along with the accumulation of volatile phenols in response to increasing concentrations of molecular sulphur dioxide (mSO2) were investigated. mSO2 concentrations up to 1 mg/L induced the non-culturable state of a portion of the population in all the strains to a different extent for each strain, although the cells were still viable. At 1.4 mg/L mSO2, cells were non-culturable, though 0.38–29.01 % of cells retained their viability. When exposed to 2.1 mg/L mSO2, viable cells were not detected. Up to 0.24 mg/L 4-vinylguaiacol and up to 0.73 mg/L 4-ethylphenol were accumulated by non-culturable and dead Dekkera bruxellensis strains, respectively. The concentration of mSO2 needed for the transition from viable to non-culturable state of D. bruxellensis strains was higher in wine than in synthetic wine medium. The volatile phenols accumulated in wine were different from those produced in synthetic wine medium, although their accumulation kinetics were similar.  相似文献   

19.
The yeast Dekkera bruxellensis is a major contaminant of industrial fermentations, such as those used for the production of biofuel and wine, where it outlasts and, under some conditions, outcompetes the major industrial yeast Saccharomyces cerevisiae. In order to investigate the level of inter-strain variation that is present within this economically important species, the genomes of four diverse D. bruxellensis isolates were compared. While each of the four strains was shown to contain a core diploid genome, which is clearly sufficient for survival, two of the four isolates have a third haploid complement of chromosomes. The sequences of these additional haploid genomes were both highly divergent from those comprising the diploid core and divergent between the two triploid strains. Similar to examples in the Saccharomyces spp. clade, where some allotriploids have arisen on the basis of enhanced ability to survive a range of environmental conditions, it is likely these strains are products of two independent hybridisation events that may have involved multiple species or distinct sub-species of Dekkera. Interestingly these triploid strains represent the vast majority (92%) of isolates from across the Australian wine industry, suggesting that the additional set of chromosomes may confer a selective advantage in winery environments that has resulted in these hybrid strains all-but replacing their diploid counterparts in Australian winery settings. In addition to the apparent inter-specific hybridisation events, chromosomal aberrations such as strain-specific insertions and deletions and loss-of-heterozygosity by gene conversion were also commonplace. While these events are likely to have affected many phenotypes across these strains, we have been able to link a specific deletion to the inability to utilise nitrate by some strains of D. bruxellensis, a phenotype that may have direct impacts in the ability for these strains to compete with S. cerevisiae.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号