首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The peptidoglycan structure of Mycobacterium spp. has been investigated primarily with the readily cultivable Mycobacterium smegmatis and Mycobacterium tuberculosis and has been shown to contain unusual features, including the occurrence of N-glycolylated, in addition to N-acetylated, muramic acid residues and direct cross-linkage between meso-diaminopimelic acid residues. Based on results from earlier studies, peptidoglycan from in vivo-derived noncultivable Mycobacterium leprae was assumed to possess the basic structural features of peptidoglycans from other mycobacteria, other than the reported replacement of l-alanine by glycine in the peptide side chains. In the present study, we have analyzed the structure of M. leprae peptidoglycan in detail by combined liquid chromatography and mass spectrometry. In contrast to earlier reports, and to the peptidoglycans in M. tuberculosis and M. smegmatis, the muramic acid residues of M. leprae peptidoglycan are exclusively N acetylated. The un-cross-linked peptide side chains of M. leprae consist of tetra- and tripeptides, some of which contain additional glycine residues. Based on these findings and genome comparisons, it can be concluded that the massive genome decay in M. leprae does not markedly affect the peptidoglycan biosynthesis pathway, with the exception of the nonfunctional namH gene responsible for N-glycolylmuramic acid biosynthesis.  相似文献   

2.
The peptidoglycan of Mycobacterium spp. reportedly has some unique features, including the occurrence of N-glycolylmuramic rather than N-acetylmuramic acid. However, very little is known of the actual biosynthesis of mycobacterial peptidoglycan, including the extent and origin of N glycolylation. In the present work, we have isolated and analyzed muramic acid residues located in peptidoglycan and UDP-linked precursors of peptidoglycan from Mycobacterium tuberculosis and Mycobacterium smegmatis. The muramic acid residues isolated from the mature peptidoglycan of both species were shown to be a mixture of the N-acetyl and N-glycolyl derivatives, not solely the N-glycolylated product as generally reported. The isolated UDP-linked N-acylmuramyl-pentapeptide precursor molecules also contain a mixture of N-acetyl and N-glycolyl muramyl residues in apparent contrast to previous observations in which the precursors isolated after treatment with d-cycloserine consisted entirely of N-glycolyl muropeptides. However, nucleotide-linked peptidoglycan precursors isolated from M. tuberculosis treated with d-cycloserine contained only N-glycolylmuramyl-tripeptide precursors, whereas those from similarly treated M. smegmatis consisted of a mixture of N-glycolylated and N-acetylated residues. The full pentapeptide intermediate, isolated following vancomycin treatment of M. smegmatis, consisted of the N-glycolyl derivative only, whereas the corresponding M. tuberculosis intermediate was a mixture of both the N-glycolyl and N-acetyl products. Thus, treatment with vancomycin and d-cylcoserine not only caused an accumulation of nucleotide-linked intermediate compounds but also altered their glycolylation status, possibly by altering the normal equilibrium maintained by de novo biosynthesis and peptidoglycan recycling.  相似文献   

3.
Structural variation in the glycan strands of bacterial peptidoglycan   总被引:1,自引:0,他引:1  
The normal, unmodified glycan strands of bacterial peptidoglycan consist of alternating residues of beta-1,4-linked N-acetylmuramic acid and N-acetylglucosamine. In many species the glycan strands become modified after their insertion into the cell wall. This review describes the structure of secondary modifications and of attachment sites of surface polymers in the glycan strands of peptidoglycan. It also provides an overview of the occurrence of these modifications in various bacterial species. Recently, enzymes responsible for the N-deacetylation, N-glycolylation and O-acetylation of the glycan strands were identified. The presence of these modifications affects the hydrolysis of peptidoglycan and its enlargement during cell growth. Glycan strands are frequently deacetylated and/or O-acetylated in pathogenic species. These alterations affect the recognition of bacteria by host factors, and contribute to the resistance of bacteria to host defence factors such as lysozyme.  相似文献   

4.
Analytical work on the fractionation of the glycan strands of Streptococcus pneumoniae cell wall has led to the observation that an unusually high proportion of hexosamine units (over 80% of the glucosamine and 10% of the muramic acid residues) was not N-acetylated, explaining the resistance of the peptidoglycan to the hydrolytic action of lysozyme, a muramidase that cleaves in the glycan backbone. A gene, pgdA, was identified as encoding for the peptidoglycan N-acetylglucosamine deacetylase A with amino acid sequence similarity to fungal chitin deacetylases and rhizobial NodB chitooligosaccharide deacetylases. Pneumococci in which pgdA was inactivated by insertion duplication mutagenesis produced fully N-acetylated glycan and became hypersensitive to exogenous lysozyme in the stationary phase of growth. The pgdA gene may contribute to pneumococcal virulence by providing protection against host lysozyme, which is known to accumulate in high concentrations at infection sites.  相似文献   

5.
Ligation of mycolic acids to structural components of the mycobacterial cell wall generates a hydrophobic, impermeable barrier that provides resistance to toxic compounds such as antibiotics. Secreted proteins FbpA, FbpB, and FbpC attach mycolic acids to arabinogalactan, generating mycolic acid methyl esters (MAME) or trehalose, generating alpha,alpha'-trehalose dimycolate (TDM; also called cord factor). Our studies of Mycobacterium smegmatis showed that disruption of fbpA did not affect MAME levels but resulted in a 45% reduction of TDM. The fbpA mutant displayed increased sensitivity to both front-line tuberculosis-targeted drugs as well as other broad-spectrum antibiotics widely used for antibacterial chemotherapy. The irregular, hydrophobic surface of wild-type M. smegmatis colonies became hydrophilic and smooth in the mutant. While expression of M. smegmatis fbpA restored defects of the mutant, heterologous expression of the Mycobacterium tuberculosis fbpA gene was less effective. A single mutation in the M. smegmatis FbpA esterase domain inactivated its ability to provide antibiotic resistance. These data show that production of TDM by FbpA is essential for the intrinsic antibiotic resistance and normal colonial morphology of some mycobacteria and support the concept that FbpA-specific inhibitors, alone or in combination with other antibiotics, could provide an effective treatment to tuberculosis and other mycobacterial diseases.  相似文献   

6.
Isoniazid is a frontline drug used in the treatment of tuberculosis (TB). Isoniazid is a prodrug, requiring activation in the mycobacterial cell by the catalase/peroxidase activity of the katG gene product. TB kills two million people every year and the situation is getting worse due to the increase in prevalence of HIV/AIDS and emergence of multidrug-resistant strains of TB. Arylamine N-acetyltransferase (NAT) is a drug-metabolizing enzyme (E.C. 2.1.3.5). NAT can acetylate isoniazid, transferring an acetyl group from acetyl coenzyme A onto the terminal nitrogen of the drug, which in its N-acetylated form is therapeutically inactive. The bacterium responsible for TB, Mycobacterium tuberculosis, contains and expresses the gene encoding the NAT protein. Isoniazid binds to the NAT protein from Salmonella typhimurium and we report here the mode of binding of isoniazid in the NAT enzyme from Mycobacterium smegmatis, closely related to the M. tuberculosis and S. typhimurium NAT enzymes. The mode of binding of isoniazid to M. smegmatis NAT has been determined using data collected from two distinct crystal forms. We can say with confidence that the observed mode of binding of isoniazid is not an artifact of the crystallization conditions used. The NAT enzyme is active in mycobacterial cells and we propose that isoniazid binds to the NAT enzyme in these cells. NAT activity in M. tuberculosis is likely therefore to modulate the degree of activation of isoniazid by other enzymes within the mycobacterial cell. The structure of NAT with isoniazid bound will facilitate rational drug design for anti-tubercular therapy.  相似文献   

7.
8.
9.
Structural analysis of compounds identified as lipid I and II from Mycobacterium smegmatis demonstrated that the lipid moiety is decaprenyl phosphate; thus, M. smegmatis is the first bacterium reported to utilize a prenyl phosphate other than undecaprenyl phosphate as the lipid carrier involved in peptidoglycan synthesis. In addition, mass spectrometry showed that the muropeptides from lipid I are predominantly N-acetylmuramyl-L-alanine-D-glutamate-meso-diaminopimelic acid-D-alanyl-D-alanine, whereas those isolated from lipid II form an unexpectedly complex mixture in which the muramyl residue and the pentapeptide are modified singly and in combination. The muramyl residue is present as N-acetylmuramic acid, N-glycolylmuramic acid, and muramic acid. The carboxylic functions of the peptide side-chains of lipid II showed three types of modification, with the dominant one being amidation. The preferred site for amidation is the free carboxyl group of the meso-diaminopimelic acid residue. Diamidated species were also observed. The carboxylic function of the terminal D-alanine of some molecules is methylated, as are all three carboxylic acid functions of other molecules. This study represents the first structural analysis of mycobacterial lipid I and II and the first report of extensive modifications of these molecules. The observation that lipid I was unmodified strongly suggests that the lipid II intermediates of M. smegmatis are substrates for a variety of enzymes that introduce modifications to the sugar and amino acid residues prior to the synthesis of peptidoglycan.  相似文献   

10.
Transposon mutagenesis of Mycobacterium smegmatis mc2155 enabled the isolation of a mutant strain (called LGM1) altered in the regulation of piperidine and pyrrolidine utilization. The complete nucleotide sequence of the gene inactivated in mutant LGM1 was determined from the wild-type strain. This gene (pipR) encoded a member of the GntR family of bacterial regulatory proteins. An insertion element (IS1096), previously described for M. smegmatis, was detected downstream of the gene pipR. Three additional open reading frames were found downstream of IS1096. The first open reading frame (pipA) appeared to encode a protein identified as a cytochrome P450 enzyme. This gene is the first member of a new family, CYP151. By a gene replacement experiment, it was demonstrated that the cytochrome P450 pipA gene is required for piperidine and pyrrolidine utilization in M. smegmatis mc2155. Genes homologous to pipA were detected by hybridization in several, previously isolated, morpholine-degrading mycobacterial strains. A gene encoding a putative [3Fe-4S] ferredoxin (orf1) and a truncated gene encoding a putative glutamine synthetase (orf2') were found downstream of pipA.  相似文献   

11.
The modification of metabolic pathways to allow for a dormant lifestyle appears to be an important feature for the survival of pathogenic bacteria within their host. One regulatory mechanism for persistent Mycobacterium tuberculosis infections is the stringent response. In this study, we analyze the stringent response of a nonpathogenic, saprophytic mycobacterial species, Mycobacterium smegmatis. The use of M. smegmatis as a tool for studying the mycobacterial stringent response was demonstrated by measuring the expression of two M. tuberculosis genes, hspX and eis, in M. smegmatis in the presence and absence of rel(Msm). The stringent response plays a role in M. smegmatis cellular and colony formation that is suggestive of changes in the bacterial cell wall structure.  相似文献   

12.
UDP-N-acetyl-D-glucosamine (UDP-GlcNAc) is an essential precursor of peptidoglycan and the rhamnose-GlcNAc linker region of mycobacterial cell wall. In Mycobacterium tuberculosis H37Rv genome, Rv1018c shows strong homology to the GlmU protein involved in the formation of UDP-GlcNAc from other bacteria. GlmU is a bifunctional enzyme that catalyzes two sequential steps in UDP-GlcNAc biosynthesis. Glucosamine-1-phosphate acetyl transferase catalyzes the formation of N-acetylglucosamine-1-phosphate, and N-acetylglucosamine-1-phosphate uridylyltransferase catalyzes the formation of UDP-GlcNAc. Since inhibition of peptidoglycan synthesis often results in cell lysis, M. tuberculosis GlmU is a potential anti-tuberculosis (TB) drug target. In this study we cloned M. tuberculosis Rv1018c (glmU gene) and expressed soluble GlmU protein in E. coli BL21(DE3). Enzymatic assays showed that M. tuberculosis GlmU protein exhibits both glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridylyltransferase activities. We also investigated the effect on Mycobacterium smegmatis when the activity of GlmU is fully removed or reduced via a genetic approach. The results showed that activity of GlmU is required for growth of M. smegmatis as the bacteria did not grow in the absence of active GlmU enzyme. As the amount of functional GlmU enzyme was gradually reduced in a temperature shift experiment, the M. smegmatis cells became non-viable and their morphology changed from a normal rod shape to stubby-rounded morphology and in some cases they lysed. Finally a microtiter plate based assay for GlmU activity with an OD340 read out was developed. These studies therefore support the further development of M. tuberculosis GlmU enzyme as a target for new anti-tuberculosis drugs.  相似文献   

13.
Active preparations of tRNA and aminoacyl-tRNA synthetases have been isolated from exponentially growing cells of Mycobacterium smegmatis and Mycobacterium tuberculosis H37Rv. Though the aminoacyl-tRNA synthetases of older cells retain their activity, the tRNAs seem to undergo modification and show poorer activity. The mycobacterial enzyme preparations catalyse homologous and heterologous aminoacylation between tRNA from the two species (M. smegmatis and M. tuberculosis H37Rv) or from Escherichia coli, with equal efficiency; tRNA samples from eukaryotic cells (yeast and rat liver) do not serve as substrates for the mycobacterial synthetases. The analytical separation of the different amino acid specific tRNAs from M. smegmatis resembles the pattern found in other bacteria. Purification of valine- (three species) and methionine-specific tRNA (two species) to 70-80% purity has been accomplished by using column-chromatographic techniques. Of the two species of tRNAMet, one can be formylated in the presence of formyl tetrahydrofolate and the transformylase from mycobacteria.  相似文献   

14.
15.
Mycobacterial peptidoglycan contains L-alanyl-D-iso-glutaminyl-meso-diaminopimelyl-D-alanyl-D-alanine peptides, with the exception of the peptidoglycan of Mycobacterium leprae, in which glycine replaces the L-alanyl residue. The third-position amino acid of the peptides is where peptidoglycan cross-linking occurs, either between the meso-diaminopimelate (DAP) moiety of one peptide and the penultimate D-alanine of another peptide or between two DAP residues. We previously described a collection of spontaneous mutants of DAP-auxotrophic strains of Mycobacterium smegmatis that can grow in the absence of DAP. The mutants are grouped into seven classes, depending on how well they grow without DAP and whether they are sensitive to DAP, temperature, or detergent. Furthermore, the mutants are hypersusceptible to beta-lactam antibiotics when grown in the absence of DAP, suggesting that these mutants assemble an abnormal peptidoglycan. In this study, we show that one of these mutants, M. smegmatis strain PM440, utilizes lanthionine, an unusual bacterial metabolite, in place of DAP. We also demonstrate that the abilities of PM440 to grow without DAP and use lanthionine for peptidoglycan biosynthesis result from an unusual mutation in the putative ribosome binding site of the cbs gene, encoding cystathionine beta-synthase, an enzyme that is a part of the cysteine biosynthetic pathway.  相似文献   

16.
Mycobacterium tuberculosis is a major global pathogen whose threat has increased with the emergence of multidrug-resistant strains. The cell wall of M. tuberculosis is thick, rigid, and hydrophobic, which serves to protect the organism from the environment and makes it highly impermeable to conventional antimicrobial agents. There is little known about cell wall autolysins (also referred to as peptidoglycan hydrolases) of mycobacteria. We identified an open reading frame (Rv3915) in the M. tuberculosis genome designated cwlM that appeared consistent with a peptidoglycan hydrolase. The 1218-bp gene was amplified by PCR, cloned and expressed in E. coli strain HMS174(DE-3), and its gene product, a 47-kDa recombinant protein, was purified and partially characterized. Purified CwlM was able to lyse whole mycobacteria, release peptidoglycan from the cell wall of Micrococcus luteus and Mycobacterium smegmatis, and cleave N-acetylmuramoyl-L-alanyl-D-isoglutamine, releasing free N-acetylmuramic acid. These results indicate that CwlM is a novel autolysin and identify cwlM as the first, to our knowledge, autolysin gene identified and cloned from M. tuberculosis. CwlM offers a new target for a unique class of drugs that could alter the permeability of the mycobacterial cell wall and enhance the effectiveness of treatments for tuberculosis.  相似文献   

17.
Staphylococcus species belong to one of the few bacterial genera that are completely lysozyme resistant, which greatly contributes to their persistence and success in colonizing the skin and mucosal areas of humans and animals. In an attempt to discover the cause of lysozyme resistance, we identified a gene, oatA, in Staphylococcus aureus. The corresponding oatA deletion mutant had an increased sensitivity to lysozyme. HPLC and electrospray ionization tandem mass spectrometry analyses of the cell wall revealed that the muramic acid of peptidoglycan of the wild-type strain was O-acetylated at C6-OH, whereas the muramic acid of the oatA mutant lacked this modification. The complemented oatA mutant was lysozyme resistant. We identified the first bacterial peptidoglycan-specific O-acetyltransferase in S. aureus and showed that OatA, an integral membrane protein, is the molecular basis for the high lysozyme resistance in staphylococci.  相似文献   

18.
The gene encoding of an alcohol dehydrogenase C (ADHC) from Mycobacterium smegmatis was cloned and sequenced. The protein encoded by this gene has 78% identity with Mycobacterium tuberculosis and Mycobacterium bovis BCG ADHC. The M. smegmatis ADHC was purified from M. smegmatis and the kinetic parameters of this enzyme showed that using NADPH as electron donor it has a strong preference for aliphatic and aromatic aldehyde substrates. Like the M. bovis BCG ADHC, this enzyme is more likely to act as an aldehyde reductase than as an alcohol dehydrogenase. The discovery of such an ADHC in a fast-growing, and easily engineered mycobacterial species opens the way to the utilisation of this M. smegmatis enzyme as a convenient model for the study of the physiological role of this alcohol dehydrogenase in mycobacteria.  相似文献   

19.
20.
Mycobacterium tuberculosis is a natural mutant with inactivated oxidative stress regulatory gene oxyR. This characteristic has been linked to the exquisite sensitivity of M. tuberculosis to isonicotinic acid hydrazide (INH). In the majority of mycobacteria tested, including M. tuberculosis, oxyR is divergently transcribed from ahpC, a gene encoding a homolog of the subunit of alkyl hydroperoxide reductase that carries out substrate peroxide reduction. Here we compared ahpC expression in Mycobacterium smegmatis, a mycobacterium less sensitive to INH, with that in two highly INH sensitive species, M. tuberculosis and Mycobacterium aurum. The ahpC gene of M. smegmatis was cloned and characterized, and the 5' ends of ahpC mRNA were mapped by S1 nuclease protection analysis. M. smegmatis AhpC and eight other polypeptides were inducible by exposure to H2O2 or organic peroxides, as determined by metabolic labeling and Western blot (immunoblot) analysis. In contrast, M. aurum displayed differential induction of only one 18-kDa polypeptide when exposed to organic peroxides. AhpC could not be detected in this organism by immunological means. AhpC was also below detection levels in M. tuberculosis H37Rv. These observations are consistent with the interpretation that ahpC expression and INH sensitivity are inversely correlated in the mycobacterial species tested. In further support of this conclusion, the presence of plasmid-borne ahpC reduced M. smegmatis susceptibility to INH. Interestingly, mutations in the intergenic region between oxyR and ahpC were identified and increased ahpC expression observed in deltakatG M. tuberculosis and Mycobacterium bovis INH(r) strains. We propose that mutations activating ahpC expression may contribute to the emergence of INH(r) strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号