首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The surface layers of the cuticle, the hypodermal membranes and the muscle membranes of the adult, the in utero larvae and the infective-stage larvae of the nematode Trichinella spiralis have been studied by means of the freeze-fracturing technique. The surface of the cuticle of both adults and larvae fractures in ways different from membranes of internal cells. The surface coat on top of the epicuticle is probably the layer that changes antigenically. Reticulate ridges, with associated particles, on the E face of the outer hypodermal membrane of the adult are probably sites of attachment of the hypodermis to the cuticle. Longitudinally arranged ridges, with associated particles, of the outer hypodermal membrane are probably points of attachment to the cuticle in the in utero and infective larvae. Rectilinear arrays of particles are present on the P face of the inner hypodermal membrane and the P face of the muscle membrane adjacent to the hypodermis of adults and larvae and probably play a role in adhesion of the muscle membrane to the hypodermis. Particle-free areas of membrane lie external to the Z bundles of the muscle cell and are similar to the sites of attachment of Z lines in insect muscles.  相似文献   

2.
Previous indications using radiolabelled larvae that Strongyloides ratti free-living infective larvae lose a surface coat during penetration of the skin were further investigated by transmission electron microscopy of the cuticle of S. ratti infective larvae in the free-living stage, after penetration of mouse skin, and after migration to the lungs. These studies demonstrated the presence of a faint electron-dense surface coat external to the epicuticle on free-living worms which was absent from larvae recovered from the skin and lungs. When free-living infective larvae were incubated in 10% CO2 at 37 C and then examined with phase-contrast microscopy, worms were observed in the process of losing this coat. These observations confirm the hypothesis that S. ratti infective larvae lose a surface coat during penetration of the skin.  相似文献   

3.
Smith VP  Selkirk ME  Gounaris K 《FEBS letters》2000,483(2-3):104-108
Trichinella spiralis infective larvae have externally oriented enzymes catalysing reversible protein phosphorylation on their surface. Incubation of larvae with exogenous ATP resulted in phosphorylation of surface bound and released proteins. Exposure of the parasites to bile, a treatment which renders them infective for intestinal epithelia, resulted in increased release of protein and an altered profile of phosphorylation. Both serine/threonine and tyrosine phosphorylation and dephosphorylation reactions took place at the parasite surface. Examination of the structural characteristics of the larvae following exposure to bile showed that the non-bilayer surface coat was not shed but was structurally reorganised.  相似文献   

4.
Shedding of antibody complexes by Strongyloides ratti (Nematoda) larvae   总被引:1,自引:0,他引:1  
Antigens on the epicuticular surface of Strongyloides ratti infective third-stage larvae (L3) could be demonstrated by an indirect fluorescent antibody technique under certain conditions. Infective L3 shed anti-antibody complexes at room temperature, but not at 4 C or in the presence of sodium azide or colchicine. Shedding of antibody did not appear to involve epicuticular antigens, and only occurred when anti-rat IgG was complexed to rat anti-larval antibody. However, parasitic L3 removed from rats did not exhibit this shedding reaction, suggesting that an important developmental change in cuticle physiology occurs during the transition from a free-living existence to a parasitic mode. The ability to shed foreign objects from the epicuticle of free-living infective L3 may be a defensive or protective response to soil microorganisms.  相似文献   

5.
This study was carried out to investigate the nature of the immunological responses which took place in a child who had recently recovered from toxocariasis. She had developed a marked eosinophilia and had high titers of toxocara antibodies. Experiments were performed to examine whether Toxocara canis infective larvae could be killed in the presence of her serum and human eosinophils. Eosinophils with human complement, or this patient's serum, adhered to the surface of the larvae within 10 min. By 40 min, using both light and electron microscopy, it was shown that the cells had flattened against the cuticle and degranulated. However, by 3 hr, eosinophils had begun to detach, and the larvae remained alive for at least 1 week afterward. Further addition of serum or of eosinophils, which were shown to be able to immobilize T. spiralis infective larvae, failed to kill the T. canis larvae. It was concluded that, in this patient, the development of an inflammatory response to a T. canis infection was not associated with the appearance of antibodies capable of inducing eosinophil dependent toxicity to the larvae in vitro. Eosinophil dependent killing mechanisms may be less important than other components of the immune response, in immunity to this parasite in humans.  相似文献   

6.
Antibodies against the cuticle surface of Trichinella spiralis muscle larvae were purified by means of immunoaffinity chromatography and incubated with ultrathin sections of muscle larvae. Major constituents of the parasite reactive with the purified antibodies included the cuticle surface, stichocyte alpha-granules, and the esophagus occupying substance of the muscle larvae. Thus the present data suggest that the cuticle surface is an antigenically different entity from the cuticle inner layers and its origin is likely stichocyte alpha-granules.  相似文献   

7.
核型多角体病毒与侧沟茧蜂对斜纹夜蛾幼虫的协同作用   总被引:4,自引:1,他引:4  
研究了斜纹夜蛾幼虫体内的斜纹夜蛾侧沟茧蜂存活率、发育历期、寄主感染病毒时间、病毒浓度之间的关系,并测定了斜纹夜蛾侧沟茧蜂的传毒效率.结果表明,病毒对寄主体内寄生蜂历期无明显影响,寄生在幼虫体内的寄生蜂能在寄主病死前完成发育,存活比例因寄主感染病毒的时间和浓度而异.斜纹夜蛾被寄生后接种病毒(SINPV),距离寄生时间越长,饲毒浓度越低,寄生蜂完成发育的比例越大,但饲毒时间是主要影响因素.从感病幼虫体内发育成的侧沟茧蜂或曾经在感病寄主上产过卵的寄生蜂,以及通过人工方式使产卵器被病毒污染的寄生蜂,均能携带一定数量的病毒.通过产卵活动,侧沟茧蜂成蜂能在寄主幼虫个体间传递病毒.当寄生蜂在感病的寄主幼虫上产卵带毒后,平均可传递病毒给2.14头幼虫;发育于感病幼虫体内的寄生蜂,平均可传递病毒给2.45头幼虫.通过用病毒液浸茧或用混有病毒的蜂蜜饲喂成蜂等方式使产卵器污染病毒的寄生蜂,传毒效率随饲毒浓度增加而提高,平均可传递病毒1.45头和0.94头幼虫  相似文献   

8.
Three-spined sticklebacks Gasterosteus aculeatus are frequent paratenic hosts of the nematode parasites Anguillicola crassus and Camallanus lacustris. As paratenic hosts, sticklebacks could spread infection by carrying high numbers of infective stages. In contrast, low infective ability of either parasite for the paratenic host could hinder the spread of infection. In the present study, G. aculeatus was, for the first time, infected under controlled laboratory conditions with defined doses of the parasites. Sticklebacks were exposed to 6, 12, 18 and 24 parasite larvae to determine the infective ability of the 2 nematode species. There were significantly higher infection rates for C. lacustris (18 to 49%) than for A. crassus (4 to 14%) at each exposure dose. In C. lacustris-infected sticklebacks, infection rates tended to be highest after exposure to 12 C. lacustris larvae and lowest after exposure to 24 parasites. In A. crassus-infected sticklebacks, no effect of parasite exposure dose on infection rates was observed. Immunity parameters such as respiratory burst activity and lymphocyte proliferation of head kidney leukocytes recorded 18 wk post exposure were not significantly affected by either parasite or exposure dose. Granulocyte:lymphocyte ratios were elevated only within the stickleback group showing the highest infection intensity of C. lacustris, i.e. to those exposed 18 parasites.  相似文献   

9.
Ren HJ  Cui J  Wang ZQ  Liu RD 《PloS one》2011,6(10):e27010
It has been known for many years that Trichinella spiralis initiates infection by penetrating the columnar epithelium of the small intestine; however, the mechanisms used by the parasite in the establishment of its intramulticellular niche in the intestine are unknown. Although the previous observations indicated that invasion also occurs in vitro when the infective larvae are inoculated onto cultures of intestinal epithelial cells (e.g., human colonic carcinoma cell line Caco-2, HCT-8), a normal readily manipulated in vitro model has not been established because of difficulties in the culture of primary intestinal epithelial cells (IECs). In this study, we described a normal intestinal epithelial model in which T. spiralis infective larvae were shown to invade the monolayers of normal mouse IECs in vitro. The IECs derived from intestinal crypts of fetal mouse small intestine had the ability to proliferate continuously and express specific cytokeratins as well as intestinal functional cell markers. Furthermore, they were susceptible to invasion by T. spiralis. When inoculated onto the IEC monolayer, infective larvae penetrated cells and migrated through them, leaving trails of damaged cells heavily loaded with T. spiralis larval excretory-secretory (ES) antigens which were recognized by rabbit immune sera on immunofluorescence test. The normal intestinal epithelial model of invasion mimicking the natural environment in vivo will help us to further investigate the process as well as the mechanisms by which T. spiralis establishes its intestinal niche.  相似文献   

10.
The cellular and molecular immune effectors that participated in host immunity against Trichinella spiralis newborn larvae were characterized in vivo using AO rats. Donor rats were immunized with 2,000 muscle larvae orally or 11,400 newborn larvae i.v. Immune serum and cells from spleen, peripheral lymph nodes, mesenteric lymph node, thoracic duct lymph and the peritoneal cavity were obtained from donor rats 10-21 days after infection and transferred into normal recipient rats. The control recipients received either no cells and serum or normal cells and normal serum obtained from normal donors. Newborn larvae (20,000-50,000) were injected either i.v. or ip into these recipients and immunity against newborn larvae was measured either by muscle larvae burden of the recipients three weeks later or by direct recovery of newborn larvae from the peritoneal cavity of the recipients. The experiments demonstrated that immune lymphocytes conferred no protection in the recipients but that immune serum and immune peritoneal cells were protective and these effects were synergistic. Cell adherence to the cuticle and killing of newborn larvae were observed in the peritoneal cavity of immune rats. Positive fluorescence was observed on newborn larvae incubated with fractionated IgM and IgG(E) antibody isotypes. Massive deposition of antibody molecules on newborn larvae was demonstrated by scanning electron microscopy. Studies using transmission electron microscopy revealed that the larval adherent cells were stimulated macrophages, neutrophils and eosinophils.  相似文献   

11.
A scintigraphic method was developed to study the distribution of radioactivity after iv injection of 131I-labeled Trichinella spiralis newborn larvae into normal rats. It was found that the radioactivity was immediately retained in the lungs and thereafter slowly released, with a mean transit time in excess of 9 hr, as calculated by image analysis. At various times after iv injection of newborn larvae into normal mice, the lungs were removed and parasites were recovered and counted. Fifty to seventy percent of the larvae injected were recovered after 30 sec, between 10 and 30% after 1 min, and less than 4% at 15 min. These results indicate that during the very rapid passage of newborn larvae through the lungs, labeled components of the cuticle are detached and retained. It is suggested that the modifications produced in the cuticle of the newborn larva during its passage through the lung may increase its resistance to the nonspecific defense mechanisms of the host.  相似文献   

12.
Eosinophils play important roles in regulation of cellular responses under conditions of homeostasis or infection. Intestinal infection with the parasitic nematode, Trichinella spiralis, induces a pronounced eosinophilia that coincides with establishment of larval stages in skeletal muscle. We have shown previously that in mouse strains in which the eosinophil lineage is ablated, large numbers of T. spiralis larvae are killed by NO, implicating the eosinophil as an immune regulator. In this report, we show that parasite death in eosinophil-ablated mice correlates with reduced recruitment of IL-4(+) T cells and enhanced recruitment of inducible NO synthase (iNOS)-producing neutrophils to infected muscle, as well as increased iNOS in local F4/80(+)CD11b(+)Ly6C(+) macrophages. Actively growing T. spiralis larvae were susceptible to killing by NO in vitro, whereas mature larvae were highly resistant. Growth of larvae was impaired in eosinophil-ablated mice, potentially extending the period of susceptibility to the effects of NO and enhancing parasite clearance. Transfer of eosinophils into eosinophil-ablated ΔdblGATA mice restored larval growth and survival. Regulation of immunity was not dependent upon eosinophil peroxidase or major basic protein 1 and did not correlate with activity of the IDO pathway. Our results suggest that eosinophils support parasite growth and survival by promoting accumulation of Th2 cells and preventing induction of iNOS in macrophages and neutrophils. These findings begin to define the cellular interactions that occur at an extraintestinal site of nematode infection in which the eosinophil functions as a pivotal regulator of immunity.  相似文献   

13.
The recirculation of Trichinella spiralis newborn larvae was studied in inbred AO rats. Newborn larvae collected after in vitro incubation of adult T. spiralis worms for 2 or 24 hr were injected into rats through the tail vein or hepatic portal vein. Blood samples from the femoral vein, hepatic portal vein, and abdominal aorta were collected at intervals from 1 min to 24 hr after larval injection. Newborn larvae of both ages (24 hr or 2 hr old) persisted in femoral vein blood for less than or equal to 5 hr after injection, but they could be detected in portal vein blood by 24 hr after injection. The injection of larvae into a tail vein or the portal vein did not influence the pattern of larval circulation, although there was a 1-5 min delay in newborn larval appearance time after injection into the portal vein. Transcapillary migration through tissue and back to the circulation was evident in the appearance of newborn larvae in the thoracic duct lymph up to 24 (occasionally 48) hr after tail vein injection of newborn larvae. During the course of a natural primary infection, no evidence for trapping of larvae in the mesenteric lymph node could be found despite direct larval migration through this organ. Injected newborn larvae were retained in the lungs, and small numbers could be recovered 24 hr after intravenous injection. We conclude that a proportion of newborn larvae recirculates within the vasculature for several hours; a smaller population extravasates but can reenter the circulatory system via the lymphatics. Furthermore, some newborn larvae are found in organs rich in capillaries up to 24 hr after their entry into the blood.  相似文献   

14.
A comparative analysis of surface proteins of adult, microfilariae and infective larvae of Brugia malayi, the human filarial parasite, has been carried out using IODOGEN (1,3,4,6-tetrachloro-3,alpha 6 alpha-diphenyl-glycoluril) and lactoperoxidase methods. SDS-polyacrylamide gel electrophoretic and autoradiographic analyses revealed the presence of 9 proteins (15-200 kDa) in adults, while microfilariae and infective larvae showed 8 and 6 proteins (15-120 kDa), respectively. The pattern of proteins radiolabelled by IODOGEN method was very similar to that of proteins labelled by the lactoperoxidase method. Since these proteins are released by the protease treatment of whole parasites, they are likely to be present on the surface of the parasite.  相似文献   

15.
The objective of this study was to determine the molting process of Dirofilaria immitis third-stage larvae (L-3) to fourth-stage larvae (L-4), as it occurred in vitro. After 48 hr in vitro, the L-4 epicuticle was completely formed, and by 72 hr there was a clear separation between the L-3 and L-4 cuticles. The thickness of the newly formed L-4 cuticle was significantly less than that which has been described for larvae recovered from dogs after a similar incubation time period. If culture conditions were lacking in bovine albumin or proper temperature, larvae successfully developed the L-4 epicuticle but did not complete ecdysis. The molting process of D. immitis L-3 was thus shown to be multistepped with different factors required to induce the various developmental phases.  相似文献   

16.
Wang ZQ  Wang L  Cui J 《Journal of Proteomics》2012,75(8):2375-2383
Although it has been known for many years that Trichinella spiralis initiates infection by invading intestinal epithelium, the mechanisms by which the parasite invades the intestinal epithelium are unknown. The purpose of this study was to screen the invasion-related proteins among the increased proteins of intestinal epithelial cells after culture with T. spiralis and to study their molecular functions. The proteins of HCT-8 cells which cultured with T. spiralis infective larvae were analyzed by SDS-PAGE and Western blot. Results showed that compared with proteins of normal HCT-8 cells, four additional protein bands (115, 61, 35 and 24 kDa) of HCT-8 cells cultured with the infective larvae were recognized by sera of the mice infected with T. spiralis, which may be the invasion-related proteins released by the infective larvae. Three bands (61, 35 and 24 kDa) were studied employing shotgun LC-MS/MS. Total 64 proteins of T. spiralis were identified from T. spiralis protein database by using SEQUEST searches, of which 43 (67.2%) proteins were distributed in a range of 10-70 kDa, and 26 proteins (40.6%) were in the range of pI 5-6. Fifty-four proteins were annotated according to Gene Ontology Annotation in terms of molecular function, biological process, and cellular localization. Out of 54 annotated proteins, 43 proteins (79.6%) had binding activity and 23 proteins (42.6%) had catalytic activity (e.g. hydrolase, transferase, etc.), which might be related to the invasion of intestinal epithelial cells by T. spiralis. The protein profile provides a valuable basis for further studies of the invasion-related proteins of T. spiralis.  相似文献   

17.
Albino rat macrophages and neutrophils, in the presence of fresh normal rat serum as a source of complement, adhered to and promoted killing of Brugia malayi infective larvae in vitro. Eosinophils, by themselves, were marginally cytotoxic at a high cell-target ratio but promoted cytotoxicity when mixed with macrophages. Eosinophil culture supernatants enhanced the macrophage mediated killing of infective larvae. The complement of fresh normal rat serum was found to act by the alternate pathway. Fresh normal rat serum depleted of alternate pathway complement activity by treatment with zymosan A, or of Factor B by heating at 50 C for 20 min, or of Factor D by passing through Sephadex G75 column, failed to promote cell adherence to the parasite. C3 molecules were detected on the surface of infective larvae by immunofluorescence. There was a significant consumption of complement when Brugia malayi infective larvae were incubated in fresh normal rat serum. Albino rat cells were more potent in inducing cytotoxicity to infective larvae in vitro than those from jird or Mastomys natalensis, which may reflect the greater resistance offered by the rat to B. malayi infection. There was much less cellular infiltration on introduction of Brugia malayi infective larvae into the peritoneal cavity of jirds compared to rats and Mastomys natalensis indicating the greater susceptibility of jirds to intraperitoneally induced infections.  相似文献   

18.
The gene encoding an antigenic polypeptide of Trichinella spiralis infective larvae was studied using recombinant DNA techniques. cDNA synthesized from poly(A)-rich mRNA from T. spiralis infective larvae was ligated into phage vector lambda gt11 DNA and packaged in vitro. The phages were propagated on Escherichia coli and a lambda gt11 expression library was constructed. A cDNA clone encoding a 46 kDa antigenic polypeptide was selected by immunoscreening of the library and identified by the epitope selection method. A clone containing nearly full-length cDNA for a 46 kDa protein was isolated. The gene encoding this 46 kDa antigenic polypeptide was characterized by DNA and RNA blot analysis using the cDNA as a probe. The gene was transcribed to mRNA with approximately 1400 nucleotides and translated to 46 kDa polypeptide. The antigenic polypeptide was excreted/secreted as a 46 kDa native antigen. The antigenic beta-galactosidase fusion protein synthesized by bacteria had no cross-reactivity with other parasite-infected sera.  相似文献   

19.
Methods for the cryopreservation of different stages of Trichinella parasites have been studied. For the cryopreservation of muscle stage larvae (MSL) of T. spiralis s.str. and T. nativa, four cryoprotectants were tested: dimethylsulfoxide, ethanediol, hydroxyethyl starch, and polyvinylpyrrolidone at different concentrations, times, and temperatures of incubation. The cooling rate was approximately 0.6 C min-1. After thawing and an incubation period of 3 hr, a high percentage (80%) of cryopreserved MSL were motile but were not infective for mice. For the cryopreservation of newborn larvae (NBL) of T. spiralis s.str., T. nativa, T. nelsoni, and T. pseudospiralis, 10% dimethylsulfoxide was used as cryoprotectant incubated at 37 C for 15 min. The cooling rate was also 0.6 C min-1. After storage in liquid nitrogen, thawing, and incubation of NBL in culture medium for 3 hr, 80% of NBL were motile. An average of 8% of T. spiralis, 6% T. nativa, and 0.5% T. pseudospiralis developed into MSL in mice. No cryopreserved NBL of T. nelsoni developed into MSL. Compared to unfrozen control groups NBL infectivity was 33% for T. spiralis, 21% for T. nativa, and 2% for T. pseudospiralis.  相似文献   

20.
The developmentally arrested hookworm infective larva resumes development only after encountering specific host-mediated cues during invasion. These cues activate a signaling pathway that culminates in the resumption of development. In Ancylostoma caninum, activation is characterised by the resumption of feeding and the release of excretory/secretory products required for infection. The dauer stage of the free-living nematode Caenorhabditis elegans is a developmentally arrested stage analogous to the hookworm infective larva. Dauer larvae exit developmental arrest in response to environmental cues that indicate favorable conditions for reproduction and growth. Because of the similarity between dauer recovery and activation, exit from dauer provides a model for hookworm larval activation. An insulin-signaling pathway has been implicated in controlling exit from developmental arrest in both C. elegans dauers and A. caninum larvae. To further investigate the role of insulin signaling in hookworm larval activation, the phosphatidylinositol-3-OH kinase inhibitor LY294002 was tested for its effect on in vitro activation using the resumption of feeding as a marker for activation. LY294002 prevented feeding in A. caninum infective larvae stimulated with host serum filtrate and a glutathione-analogue, the muscarinic agonist arecoline, or the cell permeable cGMP-analogue 8-bromo-cGMP. Similar results were seen with the congeneric hookworm Ancylostoma ceylanicum. These data suggest that an insulin-signaling pathway mediates activation in hookworm larvae, as in C. elegans, and that the phosphatidylinositol-3-OH kinase inhibitor acts downstream of the cGMP and muscarinic signaling steps in the pathway. In A. caninum, LY294002 had no effect on the release of excretory/secretory products associated with activation, suggesting that the secretory pathway diverges from the activation pathway upstream of the phosphatidylinositol-3-OH kinase step. These results provide additional support for the insulin-signaling pathway as the primarily pathway for activation to parasitism in hookworm larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号