首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ribosome recycling factor (RRF), encoded by frr gene, is involved in the release of ribosomes from the translational post-termination complex for a new round of initiation. In this study, the frr gene with either its own promoter or with ermE*p was cloned into a multi-copy vector, pKC1139, and a single-site integrative vector, pSET152, respectively. The resulting plasmids were transformed into Streptomyces avermitilis wild-type strain ATCC31267, avermectin high-producing mutant strain 76-02-e, and the engineered strain GB-165 that produces only avermectin B. The results showed that overexpression of frr increased avermectin yield (by 3- to 3.7-fold in the wild-type strain) and revealed an frr gene “copy number effect”; i.e., multiple copies of frr had a greater promoting effect on avermectin production than a single copy in each of the three transformed S. avermitilis strains. Comparison of the growth and expression of the ave genes in an frr-overexpressing strain and wild-type ATCC31267 indicated that frr overexpression promoted cell growth as well as the expression of ave genes (including pathway-specific positive regulatory gene aveR for avermectin biosynthesis and ave structural genes), leading in turn to avermectin overproduction. These findings provide an effective approach for the improvement of antibiotic production in Streptomyces.  相似文献   

2.
Avermectin is an important macrocyclic polyketide produced by Streptomyces avermitilis and widely used as an anthelmintic agent in the medical, veterinary, and agricultural fields. The avermectin biosynthetic gene cluster contains aveR, which belongs to the LAL-family of regulatory genes. In this study, aveR was inactivated by gene replacement in the chromosome of S. avermitilis, resulting in the complete loss of avermectin production. The aveR mutant was unable to convert an avermectin intermediate to any avermectin derivatives, and complementation by intact aveR and its proper upstream region restored avermectin production in the mutant, suggesting that AveR is a positive regulator controlling the expression of both polyketide biosynthetic genes and postpolyketide modification genes in avermectin biosynthesis. Despite the general concept that an increased amount of a positive pathway-specific regulator leads to higher production, a higher amount of aveR resulted in complete loss of avermectin, indicating that there is a maximum threshold concentration of aveR for the production of avermectin.  相似文献   

3.
Genetic characterization of afsK-av (SAV3816) in Streptomyces avermitilis ATCC 31272 was performed to evaluate the role(s) of this eukaryotic-type serine–threonine protein kinase (STPK) in the regulation of morphologic differentiation and secondary metabolism. The afsK-av::neo mutant (SJW4001) was defective in sporulation, melanogenesis, and avermectin production. These phenotypic defects were complemented by introduction of either the intact afsK-av or the 900-nt catalytic domain region. The catalytic domain restored sporulation and melanogenesis to SJW4001 whereas it partially recovered avermectin production. This study reveals that AfsKav is a pleiotropic regulator and demonstrates in vivo that the C-region of AfsKav is not essential for its regulatory role in S. avermitilis differentiations.  相似文献   

4.
5.
Because of the loss of productivity in industrial strains (as a consequence of genetic instability), the selection of spontaneous and induced mutants in Streptomyces might generate enhanced producers of bioactive compounds. In this work, a spontaneously high producing mutant of Streptomyces avermitilis, strain 267/2H, was isolated. This mutant produced 8.2 times more avermectin B1 than the wild type and it was treated with methyl methanesulphonate (MMS) in order to obtain better avermectin producers. One mutant, strain IPT-85, produced about 16 times more avermectin than the wild-type strain ATCC 31267 and twice as much as the parental strain 267/2H. Reversion studies showed that avermectin production by the IPT-85 mutant was unstable and required constant selection to maintain high levels of avermectin B1 production. Upon a second MMS treatment of IPT-85, a new avermectin-aglycone-producing mutant, strain IPT 85-62, was isolated. Received: 2 March 1999 / Received revision: 16 June 1999 / Accepted: 27 June 1999  相似文献   

6.
7.
8.
To isolate a gene for stimulating avermectin production, a genomic library of Streptomyces avermitilis ATCC 31267 was constructed in Streptomyces lividans TK21 as the host strain. An 8.0-kb DNA fragment that significantly stimulated actinorhodin and undecylprodigiosin production was isolated. When wild-type S. avermitilis was transformed with the cloned fragment, avermectin production increased approximately 3.5-fold. The introduction of this fragment into high-producer (ATCC 31780) and semi-industrial (L-9) strains also resulted in an increase of avermectin production by more than 2.0- and 1.4-fold, respectively. Subclones were studied to locate the minimal region involved in stimulation of pigmented-antibiotic and avermectin production. An analysis of the nucleotide sequence of the entire DNA fragment identified eight complete and one incomplete open reading frame. All but one of the deduced proteins exhibited strong homology (68 to 84% identity) to the hypothetical proteins of Streptomyces coelicolor A3(2). The orfX gene product showed no significant similarity to any other protein in the databases, and an analysis of its sequence suggested that it was a putative membrane protein. Although the nature of the stimulatory effect is still unclear, the disruption of orfX revealed that this gene was intrinsically involved in the stimulation of avermectin production in S. avermitilis.  相似文献   

9.
10.
The biological activity of avermectin B components is superior to that of avermectin A components, which are derived from avermectin B by avermectin B 5-O-methyltransferase. Gene disruption, targeting avermectin B 5-O-methyltransferase gene in Streptomyces avermitilis, was carried out to obtain a strain of avermectin B producer. Phenotype analysis of the mutant with the disrupted O-methyltransferase gene showed that only avermectin B components were produced with a significant increase in production  相似文献   

11.
Avermectin B1a batch fermentation of Streptomyces avermitilis in a 2 m3 fermentor was investigated by oxygen uptake rate (OUR) regulation during cell growth phase. OUR was controlled by adjusting of aeration and agitation. Result showed that OUR strongly affected cell growth and antibiotics production. Avermectin B1a biosynthesis could be effectively enhanced when OUR was stably regulated at an appropriate level in batch fermentation of S. avermitilis. Avermectin B1a yield reached 5568 ± 111 mg/l by controlling maximal OUR between 15 and 20 mmol/l/h during cell growth phase, which was increased by 21.8% compared with the control (maximal OUR above 20 mmol/l/h). The stimulation effect on avermectin B1a production could be attributed to the improved supply of propionic acid and acetic acid, the precursors of avermectin B1a, in the cells. Hence, this OUR control method during cell growth phase may be a simple and applicable way to improve industrial production of avermectin.  相似文献   

12.
Ivermectin, 22, 23-dihydroavermectin B1, is commercially important in human, veterinary medicine, and pesticides. It is currently synthesized by chemical reduction of the double bond between C22 and C23 of avermectins B1, which are a mixture of B1a (>80%) and B1b (<20%) produced by fermentation of Streptomyces avermitilis. The cost of ivermectin is much higher than that of avermectins B1 owing to the necessity of region-specific hydrogenation at C22–C23 of avermectins B1 with rhodium chloride as the catalyst for producing ivermectin. Here we report that ivermectin can be produced directly by fermentation of recombinant strains constructed through targeted genetic engineering of the avermectin polyketide synthase (PKS) in S. avermitilis Olm73-12, which produces only avermectins B and not avermectins A and oligomycin. The DNA region encoding the dehydratase (DH) and ketoreductase (KR) domains of module 2 from the avermectin PKS in S. avermitilis Olm73-12 was replaced by the DNA fragment encoding the DH, enoylreductase, and KR domains from module 4 of the pikromycin PKS of Streptomyces venezuelae ATCC 15439 using a gene replacement vector pXL211. Twenty-seven of mutants were found to produce a small amount of 22, 23-dihydroavermectin B1a and avermectin B1a and B2a by high performance liquid chromatography and liquid chromatography mass spectrometry analysis. This study might provide a route to the low-cost production of ivermectin by fermentation.  相似文献   

13.
14.
Avermectin: biochemical and molecular basis of its biosynthesis and regulation   总被引:13,自引:0,他引:13  
Avermectin and its analogues, produced by Streptomyces avermitilis, are major commercial antiparasitic agents in the field of animal health, agriculture, and human infections. They are 16-membered pentacyclic lactone compounds derived from polyketide and linked to a disaccharide of the methylated deoxysugar l-oleandrose. Labeling studies, analyses of the biosynthetically blocked mutants, and the identification of the avermectin gene cluster allows characterization of most of the biosynthetic pathway. Recent completion of S. avermitilis genome sequencing is also expected to help in revealing the precise biosynthetic sequence and the complicated regulatory mechanism for avermectin biosynthesis, which has been long-awaited to be elucidated. The well characterized avermectin biosynthetic pathway and availability of S. avermitilis genome information in combination with the recent development of combinatorial biosynthesis should allow us to redesign more potent avermectin analogues and to engineer S. avermitilis as a more efficient host for the production of important commercial analogues.  相似文献   

15.
A mutation to chloramphenicol resistance (Cmlr) stimulates production of macrolide avermectin in Streptomyces avermitilis; production starts in the early stationary phase. By labeling in vivo, the Cmlr mutation was shown to stimulate phosphorylation of Ser and Thr in several proteins in the same growth phase. Autophosphorylation of active protein kinases (PK) was analyzed in gel after one- or two-dimensional PAGE for the original S. avermitilis strain ATCC 31272, its Cmlr mutant, and a Cmls revertant. An increase in in vivo phosphorylation was associated with an increase in autophosphorylation of Ser/Thr-PK 41K, 45K, 52K, 62K, and 85K and complete suppression of autophosphorylation of PK 66K. Comparison of the PK molecular weights and pI with the parameters deduced for putative PK encoded by S. avermitilis genes identified the 41K, 45K, 52K, 62K, and 85K proteins as pkn 24, pkn 32, pkn 13, pkn12, and pkn5, respectively. Prenylamine lactate, a modulator of calmodulin-dependent processes, substantially reduced the avermectin production, impaired the Cml resistance, and selectively inhibited Ca2+-dependent PK 85K in the Cmlr mutant. It was assumed that PK 85K is involved in regulating the avermectin production.  相似文献   

16.
Streptomyces avermitilis was cultivated at different concentrations (0–12%) of NaCl in the medium and the content of fatty acids, production of odorous compounds and avermectins were measured. With increasing medium salinity the content of monoenoic fatty acids, particularly palmitoleic acid, increased while the quantity of branched fatty acids dropped. The production of avermectin was constant up to 0.5% of the salt in the medium and then it strongly decreased, reaching zero at 2.5% salt. The biosynthesis of oxolones and geosmin differed: the content of oxolones increased with growing salinity whereas the production of geosmin dropped.  相似文献   

17.
Summary Valine dehydrogenase (VDH) is believed to be absent in Streptomyces avermitilis. In the present study, a VDH (M r, 72 000) was detected by activity measurement and activity staining on a native-PAGE gel. The enzyme activity was induced by L-valine and repressed by ammonia. VDH activity was found to be significantly lower than L-valine transaminase activity. The results suggest that one active VDH does exist in S. avermitilis, and plays a role in valine catabolism and avermectin biosynthesis.  相似文献   

18.
19.
Oligomycin and its analogues, produced by Streptomyces avermitilis and other actinomycetes, are of interest for their potent and selective biological activities. PCR-mediated gene replacement, targeting bkdF, one of avermectin’s starter unit encoding genes in S. avermitilis, was performed to yield an oligomycin producer, BIB0423. The engineered strain produced oligomycin A at 2.3 mg/ml compared to the wild type strain at 0.1 mg/ml. This resulting mutant was genetically stable and should be useful for the industrial production of oligomycin.  相似文献   

20.
曹鹏  胡栋  张君  张变强  高强 《微生物学报》2017,57(2):281-292
【目的】利用比较代谢组学的分析方法,研究不同发酵培养基中阿维链霉菌的胞内代谢差异,揭示合成阿维菌素的关键代谢物和代谢途径,再通过理性优化添加主要关键代谢物,提高阿维菌素产量。【方法】对M1和M2培养基中生长的菌体进行基于GC-MS的胞内代谢组学分析,通过理性添加强化前体代谢物,确定阿维菌素高产培养基。【结果】GC-MS共检测到232种物质,能够精确匹配70种胞内代谢物,通过PCA和PLS分析,最终确定了21种已知的胞内代谢物与阿维菌素的生物合成密切相关。其中乳酸、丙酮酸、琥珀酸、苏氨酸、异亮氨酸、缬氨酸和油脂类物质对阿维菌素的产量影响较为显著。通过单独或组合优化添加这些前体,阿维菌素的产量从5.36 g/L提高到了5.92 g/L,增加了10.4%。【结论】基于比较代谢组学分析的理性优化培养基的方法可有效提高阿维菌素的产量,并为提高当下生物基产品的产量提供了新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号