首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The aim of this work was to evaluate the effect of different doses of eCG administered subcutaneously (0, 50 and 200 IU) and the hormonal induction of ovulation (GnRH or hCG) on embryo recovery and in vitro development of embryos post-vitrification in two selected lines of rabbit does. The two selected lines were line V (selected for the litter size at weaning) and line R (selected for growth rate). Administration of 200 IU of eCG significantly increased ovulation rate (19.2 +/- 1.2 versus 15.5 +/- 1.1 and 12.2 +/- 1.3, and the number of haemorrhagic follicles (13.8+/-1.6 versus 3.8+ /- 1.4 and 3.8 +/- 1.7), but significantly decreased recovery rate (28.8 +/- 6.3 versus 47.7 +/- 5.7 and 48.7 +/- 6.7, 200 IU versus 50 IU and 0 IU eCG, respectively), the number of normal embryos recovered per doe with at least one embryo (5.8 +/- 0.9 versus 8.2 +/- 0.9, 200 IU versus 50 IU eCG doses) and the in vitro development of embryos post-vitrification (51.9% versus 66.1%, 200 IU versus 50 IU eCG doses, respectively). Inducing ovulation with hCG significantly increased ovulation rate when compared with GnRH (17.3 +/- 0.8 versus 13.8+/-1.4), but no significant differences in embryo recovery and embryo development post-vitrification were observed between the two treatments. No significant differences were observed between the two selected lines in ovulation and recovery rates, the number of haemorrhagic follicles and the number of recovered embryos per doe. However, the post-vitrification in vitro rate of development was 59.7% for line R and 51.9% for line V (p < 0.05). It was concluded that the use of 50 IU of eCG subcutaneous with hCG or GnRH prior to embryo cryopreservation programmes in rabbits achieves the best results for embryo recovery, with the best development of recovered embryos post-vitrification.  相似文献   

2.
The objective was to develop a simple successful porcine cryopreservation protocol that prevented contact between embryos and liquid nitrogen, avoiding potential contamination risks. In vivo-derived blastocysts were collected surgically from donor pigs, and two porcine embryo vitrification protocols (one used centrifugation to polarize intracytoplasmic lipids, whereas the other did not) were compared using the Cryologic Vitrification Method (CVM), which used solid surface vitrification. The CVM allowed embryos to be vitrified, without any contact between embryos and liquid nitrogen. Both protocols resulted in similar in vitro survival rates (90% and 94%) and cell number (89 ± 5 and 99 ± 5) after 48 h in vitro culture of vitrified and warmed blastocysts. The protocol that did not use centrifugation was selected for continued use. To protect vitrified embryos from contact with liquid nitrogen and potential contamination during storage, a sealed outer container was developed. Use of this sealed outer container did not affect in vitro survival of cryopreserved blastocysts. In vivo blastocysts (n = 151) were collected, vitrified, and stored using the selected protocol and sealed container. These embryos were subsequently warmed and transferred to six recipients; five became pregnant and farrowed a total of 26 piglets. This embryo vitrification method allowed porcine embryos to be successfully vitrified and stored without any contact with liquid nitrogen.  相似文献   

3.
Ptak G  Dattena M  Loi P  Tischner M  Cappai P 《Theriogenology》1999,52(6):1105-1114
The production of offspring involving available technologies like ovum pick-up, in vitro embryo production and cryopreservation has not been fully described in the sheep. We tested the overall efficiency of these procedures on 20 Sarda dairy ewes that were twice stimulated for recovery of follicular oocytes. In total, 415 oocytes were aspirated from 522 follicles (11.5 oocytes/ewe), and 328 of them (9.1 oocytes/ewe) were selected for in vitro embryo production procedure. Development into blastocysts occurred in 98 embryos (2.7 blastocysts/ewe), of which 64 were vitrified and 34 were transferred, in pairs, directly to recipients. The pregnancy rate, diagnosed at 80 d for fresh and vitrified embryos, did not differ significantly (47.1 vs 42.8%, respectively), but there were significant differences in lambing rates between the 2 groups (41.2 vs 23.8%, respectively). Overall, 24 lambs were born; all weighed within the range for the breed, but head deformities were observed in 2 cases. The results of this study show that with application of the above techniques, it is possible to obtain repeatedly embryos and viable offspring.  相似文献   

4.
Vitrification and rapid-freezing of cumulus cells from rabbits and pigs   总被引:2,自引:0,他引:2  
To use adult somatic cloning technology in animal breeding, this technology should be complemented with nuclear donor cell cryopreservation. Two different conventional nonequilibrium methods (vitrification, V: 3.58M EG and 2.82M DMSO in PBS plus 20% FCS and rapid-freezing, RF: 0.25M sucrose, 2.25M EG and 2.25M DMSO in PBS plus 20% FCS) were assayed here on different cumuli types from rabbits and pigs. In rabbits, the cell proliferation capability of fully disaggregated cumuli was not affected by cryopreservation procedures (V: 100% and RF: 82%). Vitrified samples from partially or non-disaggregated cumuli showed the lowest proliferation frequencies (4% and 0%, respectively). In pigs, differences in cell proliferation capability were only observed between vitrified non-disagreggated cumuli and vitrified or rapid-frozen, fully disaggregated cumuli (72% vs 100% or 100%, respectively; P < 0.05). In both species, in vitro cultured sub-confluent samples were able to survive to a second cryopreservation treatment, maintaining the cell proliferation capability in nearly 50% of thawed samples. In conclusion, before cryopreservation, disaggregation of cumulus cells from both species into small clusters of cells improved their viability after thawing. These results allow us to efficiently, easily and rapidly store rabbit and pig cumulus cells, from selected high-merit females.  相似文献   

5.
The developmental potential of caprine fetal fibroblast nuclei after in vitro transfection and nuclear transfer (NT) into enucleated, in vitro-matured oocytes was evaluated. Fetal fibroblasts were isolated from Day 27 to Day 30 fetuses from a dwarf breed of goat (BELE: breed early lactate early). Cells were transfected with constructs containing the enhanced green fluorescent protein (eGFP) and neomycin resistance genes and were selected with G418. Three eGFP lines and one nontransfected line were used as donor cells in NT. Donor cells were cultured in Dulbecco minimum Eagle medium plus 0.5% fetal calf serum for 4-8 days prior to use in NT. Immature oocytes were recovered by laparoscopic ovum pick-up and matured for 24 h prior to enucleation and NT. Reconstructed embryos were transferred as cleaved embryos into synchronized recipients. A total of 27 embryos derived from transgenic cells and 70 embryos derived from nontransgenic cells were transferred into 13 recipients. Five recipients (38%) were confirmed pregnant at Day 35 by ultrasound. Of these, four recipients delivered five male kids (7.1% of embryos transferred) derived from the nontransfected line. One recipient delivered a female kid derived from an eGFP line (7.7% of embryos transferred for that cell line). Presence of the eGFP transgene was confirmed by polymerase chain reaction, Southern blotting, and fluorescent in situ hybridization analyses. Nuclear transfer derivation from the donor cells was confirmed by single-strand confirmation polymorphism analysis. These results demonstrate that both in vitro-transfected and nontransfected caprine fetal fibroblasts can direct full-term development following NT.  相似文献   

6.
Embryos were transferred between Meishan and Landrace x Large White (control) gilts on Day 4 or 5 to establish approximately equal numbers of all four possible combinations of donor breed and recipient breed. The breed of the donor gilt significantly (P less than 0.01) affected embryo survival with 44.5% of transferred Meishan embryos and 69.6% of transferred control embryos surviving to Day 30 +/- 1. There was no influence of the breed of the recipient gilt on the proportion of embryos which survived. These differences in embryo survival between the two breeds could not be explained by differences in (1) the number of embryos transferred, (2) the stage of development of the embryos transferred, (3) the interval between ovulation and transfer or (4) the degree of asynchrony between donor and recipient gilt. On Day 30 +/- 1 embryos from control donors developed into longer fetuses (P less than 0.01) with larger allantoic sacs (P less than 0.05) than did embryos from Meishan donors. Fetuses in control recipients were longer (P less than 0.01), heavier (P less than 0.001) and had larger allantoic sacs (P less than 0.05) than fetuses occupying Meishan uteri. The interaction between breed of donor gilt and breed of recipient gilt did not significantly affect conceptus growth. These results suggest that Meishan pig embryos may be less tolerant to routine embryo transfer procedures than those of control gilts, that the genotype of the dam does not affect the proportion of embryos surviving to Day 30 +/- 1, and that both fetal and maternal factors affect conceptus growth.  相似文献   

7.
This study aimed to evaluate the in vitro and in vivo viability of vitrified and non-vitrified embryos derived from eCG and FSH treatments in rabbit does. Ninety-six nulliparous does were randomly subjected to consecutive superovulation treatments with eCG (20 IU/kg body weight intramuscularly (i.m.), eCG group), FSH (3 x 0.6 mg/doe at 24 h intervals i.m., FSH group), or without superovulation treatment (control group). Does were artificially inseminated 3 days later and ovulation was induced immediately by hCG (75 IU/doe intravenous). Seven experimental groups were differentiated: first FSH and eCG treatment, second FSH and eCG treatment, eCG-interchanged group (does with previous FSH treatment), FSH-interchanged group (does with previous eCG treatments) and control group. Embryos were collected in vivo by laparoscopy 76-80 h post-insemination in the first and second recovery cycles and post mortem in the third recovery cycles. The ovulation rate was significantly higher in does treated with the first-FSH than in those treated with eCG or in control does (25.2+/-2.0 versus 19.2+/-1.4 to 11.0+/-1.5, and 12.2+/-1.2, first-FSH, first-eCG to second-eCG and control groups, respectively, P < 0.05). Significant differences were observed in the total recovery influenced by ovulation rate in each group (20.3+/-2.2 to 9.4+/-1.2, first-FSH to control groups). Embryo donor rate (donor with at least one normal embryo) was similar among groups with an overall of 75.1%. The number of normal embryos recovered per doe with at least one normal embryo increased significantly in relation to ovulation rate (17.7+/-2.2 to 8.41+/-3, first-FSH and control groups). The vitrification of embryos negatively affected their in vitro development to hatched blastocyst in all groups (88.1% versus 48%, P > 0.05). However, after embryo transfer, this negative effect was only observed in superovulated vitrified embryos (16.8 and 12.8% versus 39.4% total born rate from eCG, FSH and control vitrified groups, P < 0.05). Results indicated that the primary treatments with eCG or FSH increased the number of normal embryos recovered per donor doe, but these embryos are more sensitive to vitrification protocols.  相似文献   

8.
This study was performed to pursue the optimal condition for the cryopreservation of mouse morulae by a two-step OPS method and to investigate the feasibility of the optimal condition for vitrification of embryos at other developmental stages. First, the mouse morulae were vitrified in OPS using one-step procedure-that is, embryos were vitrified after direct exposure to EDFS30 (15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll and sucrose), or two-step method-that is, embryos were first pretreated in 10%E + 10%D (10% EG and 10% DMSO in mPBS) for 30 sec, then exposed to EDFS30 for 15 to 60 sec, respectively. After vitrification and warming, the embryos were morphologically evaluated and assessed by their development to blastocysts, expanded/hatched blastocysts, or to term after transfer. The result showed that all the vitrified-warmed morulae had similar blastocyst rate compared to that of control (91.7% vs. 100%), and the highest developmental rate to expanded blastocysts (100%) or hatched blastocysts (62.3%) was observed when the morulae were pretreated with 10%E + 10%D for 0.5 min, exposed to EDFS30for 25 sec before vitrification and warming in 0.5 M sucrose for 5 min. After transfer, the survival rate (33.1%) in vivo of the vitrified morulae was higher (P > 0.05) than that of the fresh embryos (24.6%). Secondly, embryos at different stages were cryopreserved and thawed following the above program. Most (93.4 to 100%) of the embryos recovered after vitrification were morphologically normal at all the developmental stages. The blastocyst rates of the vitrified one-cell (52.5 to 66.7%) and the two-cell (63.3 to 68.9%) embryos were lower (P < 0.05) than those of the vitrified four-cell embryos (81.7 to 86.4%), the eight-cell embryos (90.0 to 93.3%), morulae (96.7 to 100%), and the expanded blastocysts rate (98.3 to 100.0%) of the vitrified early blastocysts. The highest survival rate in vivo of vitrified embryos were from the early blastocysts (40.4%), which was similar to that of fresh embryos (48.6%). The data demonstrate that the optimal protocol for the cryopreservation of morulae was suitable for the four-cell embryos to early blastocyst stages and that the early blastocyst stage is the most feasible stage for mouse embryo cryopreservation under our experimental conditions.  相似文献   

9.
This study was performed to pursue the optimal condition for the cryopreservation of mouse morulae by a two-step OPS method and to investigate the feasibility of the optimal condition for vitrification of embryos at other developmental stages. First, the mouse morulae were vitrified in OPS using one-step procedure—that is, embryos were vitrified after direct exposure to EDFS30 (15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll and sucrose), or two-step method—that is, embryos were first pretreated in 10%E+10%D (10% EG and 10% DMSO in mPBS) for 30 sec, then exposed to EDFS30 for 15 to 60 sec, respectively. After vitrification and warming, the embryos were morphologically evaluated and assessed by their development to blastocysts, expanded/hatched blastocysts, or to term after transfer. The result showed that all the vitrified-warmed morulae had similar blastocyst rate compared to that of control (91.7% vs. 100%), and the highest developmental rate to expanded blastocysts (100%) or hatched blastocysts (62.3%) was observed when the morulae were pretreated with 10%E+10%D for 0.5 min, exposed to EDFS30 for 25 sec before vitrification and warming in 0.5 M sucrose for 5 min. After transfer, the survival rate (33.1%) in vivo of the vitrified morulae was higher (P > 0.05) than that of the fresh embryos (24.6%). Secondly, embryos at different stages were cryopreserved and thawed following the above program. Most (93.4 to 100%) of the embryos recovered after vitrification were morphologically normal at all the developmental stages. The blastocyst rates of the vitrified one-cell (52.5 to 66.7%) and the two-cell (63.3 to 68.9%) embryos were lower (P < 0.05) than those of the vitrified four-cell embryos (81.7 to 86.4%), the eight-cell embryos (90.0 to 93.3%), morulae (96.7 to 100%), and the expanded blastocysts rate (98.3 to 100.0%) of the vitrified early blastocysts. The highest survival rate in vivo of vitrified embryos were from the early blastocysts (40.4%), which was similar to that of fresh embryos (48.6%). The data demonstrate that the optimal protocol for the cryopreservation of morulae was suitable for the four-cell embryos to early blastocyst stages and that the early blastocyst stage is the most feasible stage for mouse embryo cryopreservation under our experimental conditions.  相似文献   

10.
Morphological signs of injury and subsequent regeneration following vitrification of either rabbit gene microinjected (Gene-Mi) or intact in vitro cultured embryos derived from in vivo fertilized eggs were evaluated by post-warming recovery in culture and analysed by transmission electron microscopy (TEM). The percentages of vitrified/warmed Gene-Mi embryos that reached the blastocyst stage (69%) and hatched (57%) did not differ significantly from those of intact embryos (78% and 56%, respectively). In contrast, in vitro development of embryos to the blastocyst stage among non-vitrified intact (96%) and Gene-Mi (90%) embryos compared with both the intact vitrified (78%) and Gene-Mi vitrified (69%) groups, as well as hatching rate (94%, 90% vs 56%, 57%, respectively) varied significantly (p < 0.001). Observations by TEM showed that the vitrified/warmed intact or Gene-Mi embryos without post-culture displayed severe degenerative changes among their cells. During 24 h of culture a proportion of the embryos were able to regenerate and complete the compaction process. Nevertheless the signs of previous injury were retained, such as swollen cytoplasmic organelles and remaining cellular debris in the perivitelline space. These observations indicate that the procedure of gene Mi does not significantly compromise embryo tolerance to cryopreservation and post-warming developmental ability. Severe changes in embryo morphology, observed at the ultrastructural level, can be attributed to a direct influence of the vitrification process rather than to the Mi procedure itself.  相似文献   

11.
The exploitation of the domestic animals species of South American camelids is of great social importance for the native people living in the High Andes. The reproductive physiology of these species is a unique challenge in the development of advanced breeding techniques. At present, the cryopreservation of embryos has not been developed and very few investigations have been conducted. The objective of the present work was to evaluate the in vivo survival of vitrified llama embryos after transfer to recipient females. Donors females were treated with a CIDR-estradiol benzoate-eCG regimen and were mated naturally 6 days after CIDR withdrawal. One ovulatory dose (8 microg) of GnRH was administered immediately after mating. A second mating was allowed 24 h later. Embryo recovery was performed nonsurgically between 8 and 8.5 days after the first mating. Twenty-two ova/embryos were recovered from 12 donor females. Hatched blastocysts were exposed to vitrification solution (20% glycerol + 20% ethylene glycol + 0.3 M sucrose + 0.375 M glucose + 3% polyethylene glycol (P/V)) in three steps, and after loading into 0.25 ml straws, were plunged into liquid nitrogen. For embryo transfer, recipients animals were ovulation-synchronized using GnRH administered at the same time as donors. A total of eight vitrified-warmed embryos and 12 fresh embryos were nonsurgically transferred to four and six recipient females, respectively (two embryo per recipient). The pregnancy rates were 50 and 33.3% for recipients that had received vitrified embryos and fresh embryos, respectively. The results demonstrated the effectiveness of this simple vitrification method for cryopreservation of llama embryos.  相似文献   

12.
Vitrification of rat embryos at various developmental stages   总被引:6,自引:0,他引:6  
Han MS  Niwa K  Kasai M 《Theriogenology》2003,59(8):1851-1863
The effect of developmental stage on the survival of cryopreserved rat embryos was examined. Wistar rat embryos at various developmental stages were vitrified by a 1-step method with EFS40, an ethylene glycol-based solution, or by a 2-step method with EFS20 and EFS40. After warming, the survival of the embryos was assessed by their morphology, their ability to develop to blastocysts (or expanded blastocysts for blastocysts) in culture, or their ability to develop to term after transfer. Most (91-100%) of the embryos recovered after vitrification were morphologically normal in all developmental stages. However, the developmental ability of 1-cell embryos was quite low; exposing them to EFS40 for just 0.5 min decreased the in vitro survival rate from 76 to 9%. The survival rates of 2-cell embryos and blastocysts, both in vitro and in vivo, were significantly higher with a 2-step vitrification process than with a 1-step vitrification process. Very high in vitro survival rates (94-100%) were obtained in 4- to 8-cell embryos and morulae in the 1-step method. Although survival rates in vivo of 4-cell (40%) and 8-cell (4%) embryos vitrified by the 1-step method were comparatively low, the values were similar to those obtained in non-vitrified fresh embryos. When morulae vitrified by the 1-step method were transferred to recipients, the in vivo survival rate (61%) was high, and not significantly different from that of fresh embryos (70%). These results show that rat embryos at the 2-cell to blastocyst stages can be vitrified with EFS40, and that the morula stage is the most feasible stage for embryo cryopreservation in this species.  相似文献   

13.
In cryopreserved rat embryos, survival rates obtained in vitro are not always consistent with the rates obtained in vivo. To determine the optimal conditions for in vivo development to term, rat embryos at the 4-cell, 8-cell, and morula stages were vitrified in EFS40 by a one-step method and transferred into oviducts or uterine horns of recipients at various times during pseudopregnancy. Vitrified and fresh 4-cell embryos only developed after transfer into oviducts of asynchronous recipients on Days -1 to -2 of synchrony (i.e., at a point in pseudopregnancy 1-2 days earlier than the embryos). Approximately half the vitrified embryos transferred into oviducts on Day -1 developed to term, but only a minority of embryos, whether vitrified (10%-34%) or fresh (24%-33%), transferred at later times did so, suggesting that this may not be the most suitable stage for cryopreservation. Very few 8-cell embryos, either vitrified or fresh, developed when transferred into oviducts on Day 0 to -0.5. However, when transferred into uterine horns, high proportions of vitrified 8-cell embryos ( approximately 63%) developed to term in reasonably synchronous recipients (Day 0 to -0.5) but not in more asynchronous ones (6%; Day -1). A majority of vitrified morulae also developed to term (52%-68%) in a wider range of recipients (Days 0 to -1), the greatest success occurring in recipients on Day -0.5. Similar proportions of vitrified and fresh 4-cell embryos, 8-cell embryos, and morulae developed to term when appropriate synchronization existed between embryo and recipient. Thus, vitrification of preimplantation-stage rat embryos does not appear to impair their developmental potential in vivo.  相似文献   

14.
The objective of this experiment was to evaluate the effect of a 5-day period of in vitro culture of two-to-four cell porcine embryos up to the blastocyst stage on their ability to survive vitrification and warming. In order to increase the cooling rate, superfine open pulled straws and Vit-Master((R)) technology were used for vitrification. Two-to-four cell embryos were collected from weaned sows (n=11) on day 2 (D0=onset of estrus). Some embryos (N=63) were vitrified within 3h after collection, warmed and cultured for 120h (Group V2). Additionally, 81 two-to-four cell embryos were cultured for 96h in order to obtain blastocysts; these were then vitrified, warmed and cultured for 24h (Group VB; N=65). The remaining two-to-four cell embryos were used as controls and thus not vitrified (control embryos; N=70) but were cultured in vitro for 120h. The V2, VB and control embryos were evaluated for their developmental progression and morphology during culture. All embryos (V2, VB and controls) were fixed on the same day of development in order to assess the total number of blastomeres. The survival and blastocyst formation rates obtained from V2 embryos were very poor (9.6+/-0.7% and 3.2+/-0.5%, respectively). The survival and hatching rates of VB embryos (75.0+/-0.69% and 33.6+/-0.13%) were lower (p<0.001) than those obtained with control embryos (89.1+/-0.8% and 47.5+/-0.12%). Hatched VB embryos had a lower (p<0.01) total cell number than hatched control embryos (70.3+/-4.5 versus 90.6+/-3.2, respectively). There was no difference between expanded VB and control blastocysts. In conclusion, blastocysts derived from in vitro culture of two-to-four cell pig embryos could be successfully vitrified using SOPS straws and Vit-Master.  相似文献   

15.
Genetic control of survival of frozen mouse embryos   总被引:1,自引:0,他引:1  
Lines of mice selected for increased litter size (L+), increased body weight (W+), or randomly (K) were used to study genetic variation in embryo cryosurvival in response to standard cryopreservation protocols. A total of 60528-cell embryos from 400 females were used in two studies. In Study 1, embryos from L+, W+, and K were frozen by slow-cool and ultrarapid (direct-plunge) methods to evaluate effects of selection on cryosurvival and genotype X freezing method interaction. Post-thaw survival (PTS) was measured as percentage of recovered embryos developing in vitro to blastocyst per donor female. Nonfrozen control embryos developed similarly for each line. Within slow-cool freezing, lines differed (W+ greater than K, W+ = L+, L+ = K; p less than 0.05); no differences were observed within the ultrarapid freezing. However, line X method interaction effects on PTS were not significant. In Study 2, reciprocal crosses were made between L+ and K and between W+ and K. Hybrid and pure line embryos were frozen by slow-cooling. Control embryos developed similarly for all genotypes. Selection lines did not differ for overall PTS. However, hybrid embryos from L+ dams were superior to those from K dams (84 vs. 61%; p less than .001). No overall embryo heterosis was observed. Differences were not significant among embryo genotypes or treatments for cell number or in vivo survival. These results demonstrate significant correlated responses in embryo post-thaw cryosurvival due to selection, and implicate both maternal and embryonic genomes as controlling mouse embryo cryosurvival.  相似文献   

16.
Successful cryopreservation of the important silkworm bioresource, Bombyx mori, is essential. In this study, we aimed for successful cryopreservation using vitrification of silkworm embryos. Furthermore, the embryos were assessed for the most appropriate sampling stage. We found that vitrified embryos developed to the serosa ingestion stage when they were vitrified at embryonic stage 24–25. The most suitable stage for vitrification was around a 5–10 h period when the tracheal fibers were elongating in stage 25. None of the vitrified embryos developed into larvae, although some did develop to the pre-hatching stage. From histological analysis, we found that several small cracks formed on the cuticle covering the hypodermis in the vitrified embryos. Additionally, the midgut epithelium was detached from the midgut wall and mixed with the yolk in the midgut lumen. We speculate that the vitrified embryos died from a rapid loss of body water from the small cracks formed in the cuticle. We also suggest that the vitrified embryos may have resulted in dysfunction of the midgut.  相似文献   

17.
Zhao C  Yao R  Hao J  Ding C  Fan Y  Dai X  Li W  Hai T  Liu Z  Yu Y  Wang Y  Hou X  Ji W  Zhou Q  Jouneau A  Zeng F  Wang L 《Cell research》2007,17(1):80-87
Therapeutic cloning, whereby embryonic stem cells (ESCs) are derived from nuclear transfer (NT) embryos, may play a major role in the new era of regenerative medicine. In this study we established forty nuclear transfer-ESC (NTESC) lines that were derived from NT embryos of different donor cell types or passages. We found that NT-ESCs were capable of forming embryoid bodies. In addition, NT-ESCs expressed pluripotency stem cell markers in vitro and could differentiate into embryonic tissues in vivo. NT embryos from early passage RI donor cells were able to form full term developed pups, whereas those from late passage RI ES donor cells lost the potential for reprogramming that is essential for live birth. We subsequently established sequential NT-RI-ESC lines that were developed from NT blastocyst of late passage R 1 ESC donors. However, these NT-R I-ESC lines, when used as nuclear transfer donors at their early passages, failed to result in live pups. This indicates that the therapeutic cloning process using sequential NT-ESCs may not rescue the developmental deficiencies that resided in previous donor generations.  相似文献   

18.
Piglets born after vitrification of embryos using the open pulled straw method   总被引:13,自引:0,他引:13  
Morulae and unhatched blastocysts from Large White hyperprolific (LWh) and Meishan (MS) gilts were selected to test an ultrarapid open pulled straw (OPS) vitrification method with two media. The viability of vitrified/warmed embryos was estimated by the percentage of embryos that developed to the hatched blastocyst stage in vitro or by birth after transfer. In Experiment 1, two cryoprotectant dilution media were compared for cryopreservation of MS and LWh blastocysts: TCM was a standard Hepes-buffered TCM199 + 20% NBCS medium and PBS was a PBS + 20% NBCS medium. After a two-step equilibration in ethylene glycol, dimethyl sulfoxide, and sucrose, 2-5 blastocysts were loaded into OPS and plunged into liquid nitrogen. Embryos were warmed; a four-step dilution with decreasing concentrations of sucrose was applied. In PBS, LWh blastocysts (27%) had a lower viability in vitro than MS blastocysts (67%; P = 0.001). In TCM, no significant difference was observed between genotypes (41% for LWh and 43% for MS blastocysts) and both viability rates were lower than that of the control groups. In Experiment 2, morula-stage LWh and MS embryos were vitrified and warmed using PBS. The viability rate was low and did not differ between LWh (11%) and MS (14%). In Experiment 3, 200 MS and 200 LWh blastocysts were vitrified/warmed as described in Experiment 1 (PBS). In each of 20 MS recipients, 20 embryos were transferred. The farrowing rate was 55% and recipients farrowed four and five piglets (median) for MS and LWh blastocysts, respectively. The OPS method is therefore appropriate for cryopreservation of unhatched porcine blastocysts.  相似文献   

19.
This study compares the effects of conventional controlled-rate freezing and vitrification on the morphology and metabolism of in vitro-produced bovine blastocysts. Day 7 expanded blastocysts cultured in synthetic oviduct fluid with 5% fetal calf serum were frozen in 1.36 M glycerol, 0.25 M sucrose or vitrified in 25% glycerol, 25% ethylene glycol. Cell alterations and in vitro development were evaluated immediately after thawing or after 72 h. The effect of cryopreservation on inner cell mass and trophectoderm (TE) cell number as well as glucose, pyruvate, and oxygen uptakes, and lactate release by blastocysts were evaluated. Immediately after thawing, blastocysts showed equivalent cell membrane permeabilization after both cryopreservation procedures, while alterations in nuclear staining were more frequent in vitrified embryos. After culture, similar survival and hatching rates were observed. Both procedures decreased cell number immediately after thawing and after 72 h. However, the number of TE cells was lower in frozen embryos than in vitrified ones. In relation to this, frozen blastocysts showed a decrease in glucose, pyruvate, and oxygen uptake, although those parameters were not altered in vitrified embryos. An increased glycolytic activity was also observed in frozen embryos, indicating a stress response to this procedure.  相似文献   

20.
We determined the efficacy of a microdrop vitrification procedure for cryopreservation of bovine oocytes, using vitrified oocytes as cytoplasts for intraspecies and intergeneric somatic cell nucleus transfer (NT). In vitro matured bovine MII oocytes were vitrified in microdrops with a vitrification solution containing 35% ethylene glycol, 5% polyvinyl pyrrolidone, and 0.4 M trehalose. After warming, approximately 80% of the vitrified oocytes were morphologically normal, and their enucleation rate was similar to that of fresh oocytes. The NT embryos constructed with bovine cumulus cells and the vitrified oocytes developed similar to blastocysts constructed with fresh oocytes, although the cell number of NT blastocysts originating from vitrified oocytes was lower than that of the fresh control. In a second experiment, we examined the development of NT embryos constructed with vitrified bovine oocytes and bovine fibroblasts (intraspecies NT embryos) or swamp buffalo fibroblasts (intergeneric NT embryos). There were no differences between the intraspecies and intergeneric NT embryos in fusion, cleavage and development to blastocysts, except for lower cell numbers in the intergeneric NT blastocysts. In conclusion, the efficacy of this microdrop vitrification procedure and the production of swamp buffalo NT blastocysts using vitrified bovine oocytes was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号