首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用30个微卫星标记分析长江中下游鲢群体的遗传多样性   总被引:13,自引:2,他引:13  
朱晓东  耿波  李娇  孙效文 《遗传》2007,29(6):705-713
摘要: 利用30对微卫星分子标记对长江中下游5个鲢群体进行了遗传多样性分析。结果表明: 在30个基因座中, 共检测到144个等位基因, 每个座位检测到的等位基因数为1~10个, 其中有25个座位具有多态性, 多态位点百分率为83.33,5个群体的平均等位基因数A为4.0/4.1, 平均有效等位基因数Ne为2.4445~2.6332, 平均观察杂合度Ho为0.3233~0.3511, 平均期望杂合度He为0.4421~0.4704, 平均多态信息含量PIC为0.4068~0.4286。对数据进行F-检验, Fst值表明群体间的遗传分化程度中等, 并对基因型进行了基于Hardy-Weinberg平衡的卡方检验, 所得P值说明5个群体均一定程度上偏离了平衡。5个群体间的遗传相似系数为0.8466~0.9146,遗传距离为0.0893~0.1665, 并根据Nei氏标准遗传距离用UPGMA方法对5个鲢群体进行亲缘关系聚类。  相似文献   

2.
长江中上游两个鲢群体遗传变异的微卫星分析   总被引:9,自引:0,他引:9  
王长忠  梁宏伟  邹桂伟  罗相忠  李忠  田华  呼光富 《遗传》2008,30(10):1341-1348
对长江中上游2个鲢群体使用39个微卫星标记进行了遗传多样性分析, 计算并统计了平均观测等位基因数、平均有效等位基因数、多态信息含量、遗传杂合度、Hardy-Weinberg平衡偏离指数、遗传相似系数、遗传距离等遗传参数。结果表明: 万州鲢和监利鲢群体所检测微卫星位点的平均观测等位基因数分别为6.128和4.974; 平均有效等位基因数分别为4.107和3.395; 多态位点百分率分别为100和94.87; 39个微卫星标记共有等位基因259个, 173个等位基因为两群体所共有; 多态微卫星位点的PIC在0.077~0.865之间变动,平均为0.617; 两群体所检测位点平均观测杂合度为0.834和0.775, 平均期望杂合度为0.713和0.623; 两个群体间的遗传相似系数为0.618, 群体间的遗传距离为0.482。结果显示长江中上游两个鲢群体间存在显著遗传分化, 应隶属于不同的种群。  相似文献   

3.
虹鳟6个养殖群体遗传多样性的微卫星分析   总被引:12,自引:0,他引:12  
赵莹莹  朱晓琛  孙效文 《遗传》2006,28(8):956-962
利用14对微卫星分子标记对虹鳟的6个养殖群体进行遗传多样性分析。结果表明:6个群体的平均等位基因数A为 2.89~4.22,平均有效等位基因数Ne 为2.15~2.78,平均观察杂合度Ho 为0.4801~0.6786,平均期望杂合度He 为0.5052~0.6211,平均多态信息含量PIC 为0.4298~0.5762;其中渤海站群体的等位基因数最多、多态信息含量最高,有效种群最大,通过基因型的P值发现6个群体只在位点AF375034符合Hardy-Weinberg平衡,在其他位点都不同程度的偏离平衡,同时对6个群体的遗传距离进行了估算,聚类分析发现挪威群体与其他群体遗传距离最远。  相似文献   

4.
引进美洲红点鲑群体遗传多样性微卫星的分析   总被引:1,自引:0,他引:1  
为了解引进种美洲红点鲑种群遗传结构和种质资源现状,本研究利用15个微卫星标记对其养殖群体遗传多样性进行了分析。结果表明:在30个个体中,15对微卫星引物除1对扩增产物为单态外,其余14对在美洲红点鲑群体内扩增均出现了多态,14个多态性位点等位基因数目为3~7不等,共检测到等位基因数为69个,平均有效等位基因数为3.03;期望杂合度在0.540~0.809之间,平均期望杂合度为0.664;多态信息含量在0.360~0.719之间,平均多态信息含量为0.578,表明引进的美洲红点鲑遗传多样性水平较高,具有良好的选育潜力,可以作为良好的育种材料。  相似文献   

5.
利用17个微卫星标记分析鳙鱼的遗传多样性   总被引:18,自引:5,他引:18  
选用本实验室克隆的17个鳙鱼微卫星分子标记分析四川泸州和江西鄱阳湖的两个种群鳙鱼的遗传多样性及种质特性,计算和统计了杂合度、多态信息含量(PIC)、有效等位基因数、等位基因频率、遗传距离、遗传相似系数、Hardy-Weinberg平衡偏离指数等方面内容。结果表明:选择使用17个微卫星标记,其中有4个为单态标记,13个为多态标记。江西和四川鳙鱼群体每个微卫星位点的平均等位基因数分别为3.325及3.882,平均有效等位基因数分别为3.531及2.676,多态位点百分率分别为82.4及70.5, 17个微卫星标记共有等位基因71个,多态微卫星位点的PIC在0.114~0.960之间变动,平均为0.417 ,两群体位点平均观测杂合度为0.385和0.452,平均期望杂合度为0.360和0.422,两个群体间的遗传相似系数为0.897,群体间的遗传距离为0.109。  相似文献   

6.
为了阐明红色原鸡的群体遗传结构,以对其有效保护提供遗传学依据,采用33个微卫星标记对其群体中56个个体进行了PCR-聚丙烯酰胺多态性电泳检测。33个微卫星座位共检测到140个等位基因,所有座位都呈现出多态性,每个座位的等位基因数在2~8个之间,平均每个座位等位基因数4.24个,有效等位基因数3.30个。根据等位基因频率,计算出的群体表观杂合度、期望杂合度及多态信息含量分别为0.7980、0.6506和0.5948。结果表明,红色原鸡群体遗传多样性较丰富。  相似文献   

7.
我国新引进吉富品系尼罗罗非鱼群体的遗传多样性分析   总被引:4,自引:0,他引:4  
选取罗非鱼(Oreochromis spp.)第二代遗传连锁图谱中的26个微卫星位点,对淡水渔业研究中心引进的、由60个家系组成的吉富品系尼罗罗非鱼(O.niloticus)群体进行遗传结构分析。结果显示,26个微卫星位点在吉富罗非鱼群体中共检测到124个等位基因,各位点的等位基因数为3~7个,平均4.8个。片段长度104~322 bp,平均杂合度观测值为0.622 1,平均杂合度期望值为0.642 3,平均多态信息含量(PIC)为0.633 4。所检测的26个位点中,有25个位点属于高度多态位点(PIC0.5),占所检测位点的96.15%;1个位点属于中度多态位点。结果表明,该吉富罗非鱼群体多态信息含量丰富,遗传多样性水平较高。因而该群体仍然具有较大的选育潜力,可以作为选育的基础群体开展进一步的选育工作。  相似文献   

8.
目的 应用微卫星技术在2013年和2020年对同一个KM小鼠种子群体进行遗传质量检测和分析。方法 2013年和2020年分别提取30只KM小鼠DNA,应用30个微卫星标记进行PCR扩增,基因测序后计算等位基因数、杂合度和多态信息含量等参数。结果 2013年该群体有95个等位基因,平均杂合度为0.4864,平均多态信息含量(PIC)为0.4418。2020年该群体有122个等位基因,平均杂合度分别为0.5150,平均多态信息含量(PIC)分别为0.4818。结论 KM小鼠种子群体具有良好的遗传稳定性和多样性,符合封闭群动物的群体遗传概貌特征。  相似文献   

9.
三峡库区5 个鲢群体遗传变异的微卫星分析   总被引:1,自引:0,他引:1  
&#  &#  &#  &#  &#  &#  &#  &#  &# 《水生生物学报》2015,39(5):869-876
研究利用10 个高度多态的微卫星标记对三峡水库秭归、巫山、云阳、忠县、木洞等5 个库区鲢(Hypophthalmichthys molitrix)的野生群体进行了遗传多样性分析。检测到161 个等位基因, 群体共有等位基因84 个, 每个微卫星位点的等位基因数729 不等。平均观测杂合度Ho 为0.7840.846, 平均期望杂合度He 为0.8280.847, 平均多态信息含量PIC 为0.7970.817。Fst 值为-0.0010.009, 表明5 个鲢群体间没有遗传分化。Hardy-Weinberg 平衡检验表明巫山、云阳、木洞群体在一些位点上偏离遗传平衡。Bottleneck 分析显示长江三峡库区江段的鲢群体可能在历史上经历了遗传瓶颈。5 个群体间的遗传相似系数为0.8910.950, 遗传距离为 0.0500.115, 根据 Nei's 遗传距离所绘制的聚类图, 表明鲢群体间的遗传距离与其地理距离基本一致。贝叶斯分析结果也证实三峡库区5 个鲢群体可视为一个类群。尽管没有检测到遗传分化, 数据清晰地表明三峡库区的鲢群体仍有很高的遗传多样性, 研究结果为三峡地区和长江上游的鲢种质资源保护和种群评估提供了参考。    相似文献   

10.
利用微卫星分子标记对富钟水牛群体遗传结构和保种效果进行评估,旨在掌握保种区富钟水牛目前的保种现状,为下一步制定有效的保种措施提供参考依据。结果表明:15个微卫星座位中,共检测到86个等位基因,平均等位基因NA为5.733 3;平均有效等位基因NE为2.902 9;期望杂合度、观察杂合度、多态信息含量PIC分别为0.596 4、0.487 2、0.551 9;1个座位为低度多态,3个座位为中度多态,9个座位为高度多态,这些位点可用于遗传多样性分析。  相似文献   

11.
12.
13.
14.
15.
In experiments on Black Sea skates (Raja clavata), the potential of the receptor epithelium of the ampullae of Lorenzini and spike activity of single nerve fibers connected to them were investigated during electrical and temperature stimulation. Usually the potential within the canal was between 0 and –2 mV, and the input resistance of the ampulla 250–400 k. Heating of the region of the receptor epithelium was accompanied by a negative wave of potential, an increase in input resistance, and inhibition of spike activity. With worsening of the animal's condition the transepithelial potential became positive (up to +10 mV) but the input resistance of the ampulla during stimulation with a positive current was nonlinear in some cases: a regenerative spike of positive polarity appeared in the channel. During heating, the spike response was sometimes reversed in sign. It is suggested that fluctuations of the transepithelial potential and spike responses to temperature stimulation reflect changes in the potential difference on the basal membrane of the receptor cells, which is described by a relationship of the Nernst's or Goldman's equation type.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. I. M. Sechenov, Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Pacific Institute of Oceanology, Far Eastern Scientific Center, Academy of Sciences of the USSR, Vladivostok. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 67–74, January–February, 1980.  相似文献   

16.
17.
18.
19.
20.
Evolution of living organisms is closely connected with evolution of structure of the system of regulations and its mechanisms. The functional ground of regulations is chemical signalization. As early as in unicellular organisms there is a set of signal mechanisms providing their life activity and orientation in space and time. Subsequent evolution of ways of chemical signalization followed the way of development of delivery pathways of chemical signal and development of mechanisms of its regulation. The mechanism of chemical regulation of the signal interaction is discussed by the example of the specialized system of transduction of signal from neuron to neuron, of effect of hormone on the epithelial cell and modulation of this effect. These mechanisms are considered as the most important ways of the fine and precise adaptation of chemical signalization underlying functioning of physiological systems and organs of the living organism  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号